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STATI. PROPAGATTION IN A CASCADE OF ATRFOTILS

By Anthony R. Kriebel, Barry S. Seildel,
and Richard G. Schwind

SUMMARY

An experimental investigatlion of stall propagaetion in a stationary
circular cascade in which high-speed schlieren and interferometer photog-
raphy is used is described. This investigation suggests an analytical
approach to the study of stall propagstion which is wvalid only for an
isolated blade row in an infinite flow field but which is not restricted
to small unsteady perturbations or to an assumed simplified cascade
geometry. Conditions necessary for the existence of the assumed type of
stall cells are described and equations are derived for the velocity of
stall~cell propagation.

The propagation velocities predicted for the theoretical potential-
flow model correlate with all the experimental values measured in an
isolated rotor within 15 percent.

Analysis of the flow model leads to the prediction of a tendency
for the assumed type of stall cell to split with increasing incildence
of the mean flow through the blade row. This tendency appears to corre-
late with the experimental observation of & trend for increasing numbers
of cells in the rotor.

INTRODUCTION

The objective of the analytical and experimental work presented
herein is the development of a theory which will enable the prediction
of the flow through a cascade of rigid airfoils, or an isolated blade
row of an axial compressor, when the incidence of the fluid on the air-
foils is high. It was discovered in the early days of British Jjet-
engine development that the flow can be unstable under these conditions
and that self-induced periodic disturbances on the flow can develop.

The disturbances are caused by the propagstion slong the cascade, at
approximately the relative tangential component of main-stream velocity,
of regions where the flow is badly separated from the airfoils, These
regions where the blades are severely stalled are generally called stall
cells, Stall-cell propagation in axial compressors has continued to
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recelve considerable attention since the pioneering anslytical treatment
by Emmcris (ref. 1) because of its importance as a cause of blade fatigue
failure.

The appesrance of stall propagation in aircraft gas turbine engines
generally occurs in the early stages of the axial compressor during any
off-design operating condition in which these stages operate at inci-
dences much higher than design. This condition can arise because of
restriction of flow assoclated with engine acceleration or because of
operation at lower than the design value of reduced engine speed N/Vr—.
Several mechanical devices are in use which tend to prevent the occur-
rence of rotating stall by lowering the incidence in the first few i
stages during such off-design operation. However, there are welght pen-
elties and/or aerodynamic losses associated with these devices.

A satisfactory stall propagation theory might lead to (1) prevention
of unsteady flow due to stall propagation when the incidence of the mean
flow 1s high, (2) alteration of the stall-cell pattern and/or its veloc-
ity of propagation so that, for a given cascade geometry and mean flow,
the forcing frequency of the blade loading cen be chosen by the designer,
or (3) prediction of enough informetion about the unsteady flow so that
blades can be designed to withstand the unsteady aerodynamic loading.

However, before such a theory can be achieved, it appears that more
facts must be known about the detailed nature of the flow during stall
propagation In a blade row than have appeared in the literature. Experi-
ments were run in a radial-outflow circular cascade installed in a
closed-circult wind tunnel in order to take high-speed schlieren and
interferometer pictures of the flow through a portion of the cascade
during stall propagation. Further experiments were run with an isolated
rotor of an axial flow compressor. The date taken in these two test
rigs suggest certaln spproximations to the flow which aid in the subse-
quent analytical treatment of the problem.

The analysils of the general problem of stall propagation in axlal
compressors is obviously difficult since an unsteady, rotational, three-
dimensional flow of a compressible fluid is involved. In order to retain
the essential features of the flow but to simplify the problem as much
as possible for analytical treatment, the flow 1s assumed to be two-
dimensional and incompressible and to be limited to the case of an iso-
lated blade row. It is believed that further analysis of this problem
is necessary before the much more difficult three-dimensional and multi-
stage flow problem can be successfully attacked.

There have been several analyses of the problem with the restricting
assumptions given above. (These analyses are given in refs. 1, 2, 3, and
4. A brief summery of each is presented in ref. 4.) The main reason
for attempting another analysis of the same problem is the fact that all
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of the known previous theoretical work has been further restricted by
the assumption that the unsEeady velocity perturbations are small with
respect to the mean flow velocity. From the experimental date presented
herein and in the references, this assumption does not appear to be &
good approximation; thus the present anslysis is not restricted to small
unsteady perturbations. Moreover, the previous analyses have been based
upon rather restrictive representations of an isolated blade row, either
as a lifting line or as infinitesimally spaced flat plates; whereas, in
the present analysis, the chord, spacing, shape, and detailed stall
characteristies of the blades are not specified. Finally, none of the
theories, except that given in reference k4, have offered apparent physical
causes which determine the number of stall cells. The analytical flow
model used herein appears to present qualitative information in this
regard.

From information available at present, it appears that the desirable
features of a stall propagation theory are predictions for a given cas-
cade geometry of:

(1) mean flow incidences at which stall propagation is possible
(2) the number of stall cells

(3) the velocity of stalipcell propagation

(4) the megnitude of unsteady aerodynamic forces on the airfoils

Such a theory is the goal towerd which the work presented herein is
directed.

This report summarizes the results of an investigation in which many
members of the M.I.T. Gas Turbine Leboratory staff have participated.

Profs. E. S. Taylor and A. H. Stenning guided the project. Prof. H. E.
Edgerton generously lent one of his experimental light sources and advised
in its use during the project. Prof. E. L. Mollo-Christensen provided the
miniature piezoelectric crystael pressure plckup and advised in 1ts use :
during the project. -

This investigation was conducted at the Massachusetts Institute of
Technology under the sponsorship and with the financial assistance of -
the National Advisory Committee for Aeronautics.
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SYMBOLS
A discharge coefficient, cos By/cos 52\/1 - Cp
a vortex spacing along stall cell downstream of blade row
B number of stall cells
c absolute velocity
Cp static pressure coefficient of cascade, ?2_:—2;
= oW
5 P11
C;, blade 1ift coefficient, Lifl A;ea
= pW1=
2
- Cy blade normal-force coefficient,
Aerodynamic force normel to chord
1
= oWq2
2 AL
F frequency at which each airfoil stalls
£( ) function of
i incidence, B - A, -1
K defined by equation (7)
L blade chord
l length of cascade or circumference of rotor
M Mach number
m length of stall cell in vortex spaces &
Vi cos
N = 2L ¢
X2
n width of stall cell downstream of blade row in vortex spaces

P = I'Io
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P static pressure
R radius of cylinder in picture plane, i—
Re Reynolds number based on blade chord, EE-E
r radius; polar coordinate
S=Timemean Po - P
s cascade blade spacing
t time
U rotor velocity at mean radius, Wel for isolated rotor
u, v veloclty components in x, y directions
Vv transport velocity of vortex downstream of blade row
Vg, velocity of vortex I' along lines (b) and (e) in figure 10
\'1 velocity induced by stall cell, I'/a
Vp velocity of stall propagation relative to blade row
VQ absolute veloclty of stall propagation, U - VP
W veloclty relative to cascade or rotor
X < oX1
¥z
Y fraction of downstream periphery covered by stall cells,
ne,
1 cos §
z complex coordinate in physical plane, x + iy
o angle of flow from axial direction in absolute coordinate

system
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B angle of flow from exial direction in coordinate system fixed
to blade row
Iy strength of shed vortex
To strength of bound vortex
t complex coordinate in picture plane, € + 1i7n
6 polar coordinate; blade camber angle
A cascade stagger angle from blade chord to axial direction
p density of fluid . __
o cascade solidity, L/s
T period with which stall cells pass & fixed point o
@ angle of stall cell from axial direction
v velocity potential : .
(_) complex conjugate
(%) = o( ) /ot
Subscripts:
i inside stall cell
o stagnation point; outside stall cell
1 far upstream; upstream measuring station in circular cascade
2 far downstream; downstream messuring station In circular

cascade

¢, E, ¥, FG, G, K measuring stations along axls of rotor shown in

figure 35
redial component

axial component (note, Cy = Wy)

tangential component



NACA TN 413k T

BACKGROUND

Conditions regquired for the existence of smaell-perturbastion stall
propegation and & mechanism by which the stalling of rigid airfoils in
cascade can propagete have been clearly explsined in references 1 and U,
where the cascade is assumed to consist of infinitesimally spaced flat
plates of finite chord which stall at or near theilr trailing edges and
between which the flow is one-dimensional. Tt is spparent that, as is
described in these references, the diversion of flow around a stalled
airfoil tends to stall the adjacent airfoll on its suction side and to
unstall the opposite adjacent airfoil. However, in order to spply the
analysis of reference 4 to calculate the veloecity of stall propagation,
it is necessary to know an "equivalent chord length" if the airfoils
do not stall locally at their trailing edges. In general, from the data
presented herein, it appears that the separation of the boundaery leyer
assoclated with stalling occurs more nesrly at the airfoll leading edge
during stall propagation and that the flow in the blade passages is
rather far from one-dimensional for typical values of cascade solidity o.
It was further assumed in reference 4 that the performance of a blade,
that is, the "discharge coefficient A," or blade boundery-layer dis-
placement thickness, was & function only of local incidence. A result
of the analysis based upon these assumptions was that the harmonics of
the small perturbation traveled gt different velocities and it became
necessary to restrict the velocity perturbation upstream of the cascade
to a pure sine wave in the ansalysis in order that it should maintain its
shape as it propagated. The sine-wave shape does not agree well with
experimental datae, particularly for small numbers of cells.

In all the previous analyses, the equations of motion were solved
for the irrotational motion of the fluid upstream of the cascade with
the cascade as a boundary and the cascade charsacteristics appearing in
the boundary conditions. Since the time-dependent differential equa-
tions are nonlinear, the assumption of small unsteady perturbations was
necessary in order to linearize and solve the equations. Furthermore,
in order to make the boundary conditions continuous, it was necessary
to restrict the cascade geometry to infinitesimal blade spacing. The
anslyses based upon the assumption of small perturbstions have yielded
valugble information about the qualitative nature of stall propagation.
Undoubtedly this assumption is valid for the prediction of the onset of
propagation; however, its validity for the prediction of propagation
velocities of large amplitude perturbations appears uncertain.

In reference 3 an analysis based upon representation of the cascade
as & distributed vortex sheet (infinitesimal blade chord and spacing)
led to the prediction of infinite wvelocity of propegation for some values
of incidence unless an arbitrary "boundsry layer phase lag" was included.
This difficulty did not arise in the analyses of references 2 and kL,
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where the assumption of infinitesimal blade Bpacing was made also. From
the analysis herein, where the two-dimensional flow between finitely
spaced airfoils is considered in representing the cascade during stall
propagation, it appears that the propagation velocity must be of the

same order of megnitude as the free-stream velocity even 1f the boundary-
layer phase lag of the airfolls is zero. As the dimensions of the cas-
cade shrink to zero, similitude requires that V, remain finite. The

present anslysis indicetes also that the stall cells must be regions of
high losses and low stagnation pressure in g coordinate system fixed to
the stall-cell pattern, which 1s contrary to-the assumption of constant
stagnation pressure in the section "Airfoil Theory" of reference 3.

Information derived from high-speed interferometer plctures of the
flow through a portion of a cascade during stall propagation suggests
an analytical approach which does not necessibate the direct integra-
tion of the equations of motion, which is not limited to smell perturba-
tions, infinitesimal blade chord, or infinitesimal blade spacing, and
which does not require arbitrary assumptions regarding the location of
separation of the boundary lsyer from the airfoil or the time required
for separstion.

ANATYSTS OF STALL PROPAGATION IN A BLADE ROW

Development of a Vortex Flow Model

Experimental and mathematical Jjustification.- It 1s noted in the
interferometer pictures of roteting stall in & circular cascede (figs. 1
to 4) that the vorticity shed dowmstream from the cascade airfoils
appears to be concentrated largely in discrete vortices which accumulate
at and depart from the leading and trailing edges of the airfoils as
they periodically stall and unstall. Furthermore, the pictures indicate
that the airfoils shed & large part of thelr bound vorticity when they
stall out. This appears to be true for all the circular cascade con-
figurations, Reynolds numbers, and Mach numbers tested. Experimental
dete and calculations which support these conclusions and which suggest
that they may be valid also for the flow through & research compressor
assembled as an isolated rotor are presented subsequently. 1In general,
the data suggest that the airfoils which were tested, both in the rotor
and in cascade, shed vortices during stall propagation similesxr to the
Kérmdn vortex street shed from a flat plate and that the vortices formed
in a manner similar 1o the vortices formed at the edge of a flat plate
moved impulsively from rest normal to surface of the plate, as in the
analysis of reference 5. ' o ’

However, the first suggestion that there might be a strong comnec-

tion between stall Propegution and vortex shedding was in reference l,

i vy
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where 1t was observed experimentally that, 'as the solidity of the circu-
lar cascade was reduced, the frequency of stell propagetion approached
the Kdrmdn vortex-street frequency for an isolated plate as found experi-
mentally in reference 6. Similar date for a different configuration of
the circular cascade are shown in figure 5.

With the above experimental evidence as & basis, it is assumed that
during stall propagation all the circulation downstream of the cascede
is about discrete potentisl vortices which are shed from the airfoils
when they alter their circuletion upon entering or leaving a stall cell.
The experimental evidence suggests that with this assumption, it should
be possible to devise & vortex flow model of stall propagation in a
blade row where the vortex shed from the leading edge of & blade moves
across the passage and stalls the adjacent blade before moving on down-
stream with undiminished strength.

There are several advantages which arise from the fact that the
hypothetical flow model is irrotational except at discrete singularities.
The most importent advantage is that the flow, even though it is unsteady,
is "kinemstic;" that is, the equations of motion need not be integrated
to solve the flow, since the assumed conditions of irrotationality, con-
tinuity, and incompressibility alone are sufficient. This may be shown
from the vector identity

VeV = grad div V -~ curl curl V

The continuity equation,

g% + div pV = 0O

shows that div V = 0 since p 1is assumed constant. Stokes' and Kelvin's
theorems are not affected by time varistion of flow and are sufficient

to determine irrotatlionality. Since all vorticity is assumed to be con-
centrated at singulsr points and inside airfoil surfaces, curl V=0
everywhere in the flow field because the singular polnits are excluded
from the field. Consequently, VeV = 0. Laplace's equation is satisfied
at every instant of time, and the flow may be built up by the superposi~
tion of the unsteady potential flows about the vortices which are assumed
to be shed from the elrfoils and convected downstresm.

If the effect of & single potential vortex upon the flow gbout an
isolated flat plate is studied, qualitative informetion is obtained which
is useful in the subsequent analysis of & complete cascade of airfoils.

Effect of a vortex on flow about a flat plate.- To find the effect
of an adjacent potential vortex upon the circulation about a flat plate
of chord L in streaming flow, the method used in reference 7 to estimate
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biplane wing interference is extended. The two-dimensionsl flow about
& cilrcular cylinder which by the Joukowskil transformastion can be altered
to the desired flow is first considered.

Let { =¢£ + in be the complex coordinate in the circular plane
and f£(¢) be the complex potential of the flow before the "disturbance"
of the flow by the introduction of the circular cylinder, |g| = E.

Then after the cylinder is introduced, by the circular theorem of refer-
ence T, the complex potential is given by

- 12\ _irg
w(e) = £(t) + f<l6§) 20 10, ¢

where f denotes the complex conjugate of f and Fo/Eﬂ 1s the circu-
lattion about the cylinder.

If §, 1is a stagnation polnt on the cylinder, %% = 0 when

ifo - 2 = 2"
t = go = (E)e s go(go) = %g, £o = E%E;’ fv(go) = ug - 1lvg, and

f'(fa) = ug + ivy where u and v are the velocity components at ¢
in the "undisturbed flow," that is, before the cylinder is introduced.

Thus,
_d_E = f! - L2 fl L2 - iFO =0
(dﬁ) Lo (€o) 16¢.2 (l6§o) 2ng,

gi = -1t £ (L) + 1T.F'(T,)

%{2 = -1(&o + 1no)(ug - 1vy) + 1(Eg - ing)(ug + ivy)

gﬂ = -2(EgVo - Nolo)
7

2184 [£1(L0)] = 21(ko + 1n0) (ug - 1vo)

21(Eouo + NoVo) + 2(EoVo = Mollo)

wi
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Therefore,
To _ o1t _[er(t
en { 0[(0)] Real

Let up + ivg = qeiw, then ug - ivg = qe’iw = f'(;o). Substituting
into the above equation gives

&’. = _QE_ L_q' ei(eo-"lr)J
2n L . Real

2§qsin(eo _—)
=2%Vt

where vy 1is the velocity tangent to the circle at {, 1in the undis-
turbed flow.

To epply the above result to an undisturbed flow consisting of a
uniform velocity W at the angle B and & potential vortex I' at
(rl,el), one takes the trailing edge of the cylinder to be a stagnation

point and places it at the origin; Fo/2n gives the circulation required
to maintain the Kutts condition, and

Py = nIW sin p + =—22 %1

2ry

The equation above indicates that 1f the Kutta condition is satis-~

fied the locl of the vortex I’ for constent cylinder circulation Iy/2x
form a bipolar system of circles. When the Joukowskl transformation is
epplied to the flow, the cylinder becomes & flat plate of chord L and
the circles are transformed into curves which pass through the trailing
edge of the plate. The dashed curves in figure 6 are the loci of the

vortex I’ for constant plate circulation gﬁ which is given by

T'o = nlW sin g + ol

if the Kutta condition is satisfied. The curve for n = 0 1is lebeled
the neutral line. When the vortex T is on the neutral line it induces
no veloclty at the trailing edge of the plate and has no effect on the
cylinder circulation.
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The effect of plate cember may be estimated by assuming the plate
to be a circular arc which transforms into a circle displaced from the
origin as shown in reference 8 and indicated in figure 7. It can be
seen from figure 7 that, if 6 1s the camber of the plate and if €
is the displacement of the cirecle from the origin, then in the notation
of figure 7T

28 = R gin = _
28, 28,
- 2€ =
sin (%) tan g-
1 1 € __
- = =~tan o
sin< > tan<§> a
2
Q = tan'l L 1

sin(%) i tan_(%)

The solid curve in figure 6 is the neutral _line for a plate with camber
angle 6 = 30°, The displacement of the neutral line indicetes the man-
ner in which the other curves are displaced by the effect of plate
camber,

From figure 6 it can be seen that if a vortex I' is in the vicinity
of a plate, the plate circulation is grestest when I' 1s near the '
trailing edge. Therefore, if a vortex I' is shed from the leading edge
of one of a cascade of alrfolils, the clrculation about the adjacent air-
foil should go through a maximum value Just after the vortex passes under
its trailing edge. Although this describes the effect of only one shed
vortex, figure 6 indicates that this 1s the dominating effect, since the
vortices shed from the other cascade airfoils do not epproach the
trailing edge of the airfoil in question so closely. The effect of the
vorticity shed from the sirfoill itself as its circulstion changes is

neglected also in this simple quasi-steady analysis. However, it appeéis"'

that one mey conclude that there is 1little tendency for a ceascade air-
foil to stall until the adjacent shed vortex approaches its trailing

edge. Since a certain amount of time is reguired for the shed vortex
to move to such a location, infinite propagetion velocity is precluded

even though the time required for boundary-layer separation and accumula-

tion of vorticity is neglected.

1
J
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This qualitative description of a mechanism by which stelling can
propagate along & cascade of airfoils indicates the direction in which
the stall will propagate and shows that the velocity of propagation must
be of the same order of magnitude as the free-stream velocity. Experi-
mental verification of the description eppears in figures 1, 2, and L.

Trajectory of a shed vortex.- With the effect of a vortex I' on
plate circulation as determined in the previous section for quasi-steady
flow, it should be possible to estimate the velocity of stall propaga-
tion along a blade row if the trejectory of the shed vortex can be cal-
culated and a stall criterion can be established to determine when the
succeeding vortex is shed. Although difficulties are encountered which
appear to be insurmountable, the attempts made to calculate the shed-
vortex trajectory are presented briefly so that these difficulties may
be pointed out and so that some quaelitative information can be derived
which is used in the succeeding analysis.

In the first attempt, the cascade is assumed to be represented by
an infinite series of potential vortices as described in reference 9
where 1t was shown that the conjugate complex velocity vector given by
the geometry of figure 8 is

u = iv = il eikcoth<55 ei}>
2s s

where 2z = reie = X + 1y = Complex coordinate and u + iv = Complex

velocity vector. Values of the real and imeginery parts of the function

eikcoth(meix 5) -8
S nx

are tabulated for various values of % in reference 9. By plotting

these data into graphs, (u + iv) can be quickly calculated at any polnt
z = x in the field near a vortex street at arbitrary angle A, with
the vortex at the origin missing. If it is assumed that the vortex at
the origin is a free vortex, having been shed from its airfoil, its
trajectory can be calculated by a stepwlse numerical procedure for a
flow geometry approximately the same as the experimental geometry of
figure 9.

If it is assumed further that blade (a) in figure 8 stalls when
the vortex is nearest the corresponding position in figure 9, the cal-

culated velocity of stall propagation is %E = %%. Similer results are
X

obtained when the calculatlion is made assuming that alternate blades
stall simultaneously (which corresponds approximately to the stall-cell
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pattern of. figure 9 for 16 stall cells and 27 blades) and the calculated

value for WE is %?, about twice the experimental value. It is con- ¢
cluded that this representation of the cascade is too simple to give
good numericel answers and that the effect of the presence of & blade
after its circulation is shed should be included in calculating the _
trajectory of its shed vortex. This effect is to reduce the transport oz
veloclty of the vortex when 1t 1is near the blade so as to give smaller .

values for Vp/Wx- The neglected boundery-layer time delsy further ' _—

reduces Vp/Wy.

In reference 10 expressions are derived for the path of a vortex

itk

the vortex. It is shown that the path of a vortex near & flat plate

is not simply the Joukowski transform of the Ppath in the circular plane
but is given by the Routh stream functlon. For the case of one vortex
near & plate with no circulation, a finite-difference method could be
used to determine the time regquired for the vortex to move between -
given points on its path. However, difficulty erises from the fact - . _. L
that when the vortex is near the plate, just after being shed, the
assumption of potential flow gives very erronecus results. Near the ,
plate, the calculated transport velocity vector of the vortex becomes -
infinitely large and points in an upstream direction. Therefore, the

initial point of the vortex trajectory cemnot be taken near the leading A
edge of the airfoil, and the calculation must be started from some »
point eway from the airfoil surface. The shape of the trajectory and

the time required for the vortex to be convected downstream is found , -

~-to depend critically upon the initial point chosen. The location of:
the initial point end the time required for the vorticity to be shed
from the airfoil surface and to accumulate at this point is determined e
for a special case in reference 5, but the method used appears to be :
too involved for the problem at hand.

Vi gt

1l
N
I

Examination of the expressions derived in reference 10 indicates
that near the plate the shed vortex moves downstream more slowly than
when it is-away from the plate. This informatlion is used in the sub-
sequent analysis, which circumvents the difficulties mentioned above
and which hag been-devised to deal wlth the problem of the convection. . .
of a series of vortices shed from e cascade of airfoils. .

Analysis of a Vortex Flow Model of Stall Propagation

Derivation of expressions for propagetion velocity.- Velocity meas-
urements taken during stall propagation indicate that for a given oper-
ating condition or mean flow, the unsteady velocity perturbation trans-
lates at constant velocity Vp along the cascade, and to a first T
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approximation, the shape of the velocity profile of the unsteady per-
turbation is maintained constant. In other analyses, previously men-
tioned, it was assumed that the profile is constant, and it is also
assumed to be constant here, although date which will be presented sub-
sequently indicate that this is not always strictly true. With the
approximation that each cascade airfoil sheds a discrete potential
vortex I' when it enters the stall cell and another -I' of opposite
sign when 1t leaves the cell, it follows tThat all the trajectories of
vortices (of same sign) shed from the cascade airfoils must be trans-
lates of the same curve and separated by the blade spacing s along
the cascade.

The vortices which have been shed downstream must be arranged in a
pattern as shown in figure 10. The dashed lines indicate the trajec-
tories of the vortices shed from two succeeding blades. The I vortices
must lie on & line (b) which eventually becomes straight downstream of
the cascade and the ~I' vortices must be located aslong & line (c) which
becomes straight and parallel to line (b) downstream of the cascade.

The region between lines (b) and (c) is called the stell cell. Lines (b)
and (c) are of constant shape in time and move relative to the cascade
with the velocity of propagation VP'

In a coordinate system which is fixed to the stall cell, the blades
move down (fig. 10) with velocity V., and the shed vortices move down-

stream along the stationary path lines (b) and (c). The flow is steady
in time except for the effects due to the finite spacing of blades and
shed vortices. It can be seen from equation (1) that these are local
effects confined to an areas within approximately one blade spacing of

the cascade and one vortex spacing of lines (b) and (e¢). Flow is diverted
to each side of the stall cell which has the nature of & thick wave.

After they ere far downstream of the cascade, the shed vortices
are spaced uniformly by a distance & along lines (b) and (¢) and move
with transport velocity V. The symbol ¢ is defined as the angle
between each street and the cascade axis, and n 1is defined as the
nunmber of vortex spaces between the streets as indicated in figure 10.
In figure 11 are indicated the velocity triangles essociaeted with the
stall cell. The veloclty at any point far downstream of the cascade
is Wp plus the induced velocity due to the stall cell (which is the

velocity induced by two infinite vortex streets).

If the blades stall out completely when they enter the cell, the
strength of the shed vortices will be. of the order of magnitude

IT = (W - W, s
( el 92>
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From reference 11, for & single infinite row of equidistant vor-
tices, each of strength I' (plus clockwise) st distances a apart,

with the origin at a vortex and the axis of x along the row, the L
velocity components induced by the vortices are -
r sinh(2ny/a)
u=—-—
2a cosh(2ny/a) - cos(2nx/a)
\ (1)
_r sin(2nx/a)
28 cosh(2ry/a) - cos(2xx/a)
end one may calculate the maximum value of v for y = Constant # O
as follows: -
LI e [(cosh any cos -‘e—’fﬁ)cos gnx sin@ g:t_x]
B_v _ 28 & a a 8 a
ox E:osh(znry/a) - cos(2:~:x/s.):|2
. 2 e ) LA
l:sin(zzrx/a)] + E:os(zzrx/a.)] =1
&

cosh—g-glcosgg}--l=0

cos sz = L TR
cosh E’t—y
a
sin 2—;‘5 = \/l - c052 2% =

i}
ct
o
B
n
13
|
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T
V. =
WBX ~ 28 sinh(2ry/a)

Therefore, far downstream, the maximum lateral velocity (normal to
lines (b) and (c)) that the vortex streets can induce on each other is

Vv =_—F-—
max  og ginh 2xn

where na is the distance between lines (b) and (c¢). If n>1

Wo, - Wg
< % 28

AV ——
500 a
and mey be neglected.

The basis for taeking n > 1 is derived from the hot-wire data
taken downstream of the isolated rotor where it is noted that the cells
always cover at least two blade spaces. This appesrs to be true, in
general, for stall cells in rotors. In the interferometer pictures
from the circular cascade, figures 12, 2, and 1, it is noted that n = 1;
however, the downstream flow fleld extends only 2 or 3 blade chords from
the circular cascade, so that the initial assumption of an infinite down-
stream field is not valld for the circulasr casceade.

More than e distance & from the vortex streets the longitudinal
veloclity induced by them may be neglected outside the cell, while inside
the cell, from equation (1), Vi =T'/a.

The resultant transport velocity of each downstream vortex is V
as shown in figure 1l. Solving for the velocity of propagation V?
from figure 10 gives -

Vp = W, - %% sin § - <Wx2 - %% cos ¢>tan o)

and if § =0, Vp = Wg -

This same result can be obtained easily by noting the parallelogram
in the velocity diagram of figure 11 and solving for the equal and oppo-
site side from Vp. One advantage of the assumed vortex flow model is
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that Vb can be calculated awdy from the cascade without solving for

the detalled nature of the flow in or near the cascade except insofar
as this affects the angle @. It is observed that Vp and the angle

are uniquely dependent 1f the downstream velocity W, 1s given and if
n > 1. The velocity of propagation Vp does not depend explicitly on
the physical size or, shape of the stall cell or on the magnitude of the
veloclty perturbation. Since the angle ¢ hes been observed experi-

mentally to be small in many cases, equation (2) indicates that the
fair experimental agreement between Vb and W92 which has been noted

by other observers is an immediate consequence. However, in the analy-
sis to follow, no assumptions regarding the angle ¢ are made.

To continue the analysis, the following verilables are defined:

N = Vj cos g

>
P = F/Po - Shed vorticity
Bound vorticity
X = ;5;
X2

na
Y = fraction of downstream periphery covered by stall cell, ——ZSEE—Q

The circulation around a blade away from the cell is given by

Ty = s(Wel -w92> (3)
Then,
NW.
r _Flo S X2

Vi = = = —= =P Z(W -W)—- L
1=e = a( 17 ") T s @ ()

and £ = N

a

- P(X tan By - tan Ba)cos g
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The time-average continuity equation gives

= ( ” cf¢)“’x2 * co:a¢<wxe - ¥y cos ¢)1

4 (5)
X-1=Y(1-N) -Y

X=1-13IN
Solving from figure 11 for the velocity with which the vortices move
along lines (b) and (c) gives

L v
V. = 22 1

cos § 2

Since the frequency with which vortices pass downstream points on
lines (b) and (c) must be the same as the frequency with which vortices
are shed onto the lines,

s _ Y_B ) WGQW— sz tan ¢ _ (ta.n 52 - tan ¢)cos ¢ (6)
& & X Vi 1.XN
cos § 2 2
Eliminating s/e from equations (4) and (6) gives
2
('ta.n By - tan ¢)cosz¢ = N - (8°/2) =K (1)

P(X ten By - tan 52)

From the velocity diagram for an isolated rotor in figure 13 it can be
seen that

X tan Bl—tan [32='ba.na,2
for an isolated rotor with no upstream whirl velocity (Cel = O).

It is noted that since the shed vortices are convected downstream,
N< 2. Also, the range of P must be limited to 0 <P < 1. The curves
of K versus N for P(X ten B; - tan 132) assumed constant are parab-

oles. Curves of K versus tan § for Bo assumed constant are almost
straight for tan @ > -0.2, as shown in figure 1k, which is & plot of
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K sgainst tan § for Bp = 30° and 50°. (Experimentel values of B,

fog ?he isolated rotor from which data were taken fall between 300 and
50%.

A diagrem of K plotted against N and K plotted against tan @
with the intercepts and peaks laebeled is shown in figure 15. It i1s 1ndi-
cated that for a given value of K there are either two or zero solutions
for the angle ¢ (and VP).' However, solutions which are physically
possible appear to lle on the positive side of the peak of the curve of
K against tan @, (tan @ > tan By - sec Bp 1in fig. 15), since experi-
mental values of @ presented herein fall between -15° and 19° and
since all known experimental values of Vp are less than Wel. Quali-

tative reasoning based on the results given in the section entitled
"mffect of a Vortex on Flow About & Flat Plate" indicates that a blade
hes 1little tendency to begin to stall until the vortex shed from the
preceding blade approaches the trailing edge. Since time s/Vb is
required for the vortex to be formed and shed from a blede and to
approach the trailing edge of the succeeding blade when it begins to
stall, s/V is also the time required for the vortex to move from
points (1) to (2) in figure 10. Since it has been shown that the veloc-
ity of the shed vortex is less when it is near the blade than when it

is downstream (for an isoleted blade and vortex) and since there is &
boundary-layer time delay required for the vortex to be formed, it
would appear that large negative values for ¢ are impossible for typi-
cal cascade geometries. This precludes the possibility of infinite
propagation velocity, since from equation (2) for Vp —» o, @ - -90°.
For the reasons above, only the solution giving the smaller value of ¢
and Vp < Wel (as indicated in fig. 15) will be retained.

Therefore, ten B, - sec B, < tan @ < tan B, and K plotted
’ 2 2 o 2

against ten ¢ can be roughly approximated by a straight line which
passes through the intercepts tan B, O and (0, tan 52)‘ It can be

seen from the geometry of figure 15 that within this approximetion

R

V. N - (N%/2)
D = 8
WE; K P(X tan B; - tan Bz) (&)

or, for an isclated rotor, --- . ) .
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Vp . N - (¥2/2)

er P tan an

Ty o N - (Pf2)
062 P tan?ag

If N 2 1, there is small net axial flow through the blades in the stall
cell since lines (b) and (c) in figure 10 are path lines and the mass
flow into the cell through the blades must be equal to the axial flow

in the cell downstream. It is assumed that the blades in the stall cell
must lose most of their circuletion if N =1 and, as a result P = 1.

Experimental velues of N appear to be close enough to unity to
assume that N =1, since the variation of K with N is small for
values of N near unity as shown in figure 15 (if 3/4 < N< 1, then

0.47 < K <o.5o>.
ap

tan

For an isolated rotor Cel =0 and for P =N=1 equation (8)

becomes

~ cot an
K& ——

Eraﬁ
nR

(9)

T
ne

~ cotgag
2

Equation (9) is based upon the approximetion that X plotted
against tan § is linear. However, if P =N = 1, equation (7) cen be
solved for tan ¢ explicitly without recourse to this approximation.

If P=0N=1, equation (7) becomes

1+ tan2¢

t - tan =
o Bp # 2(X ten By - ten Bp)

0 = tan®g + 2(X tan B, - tan Be)tan §+1 -2 tan B2(X tan B, - tan ﬁa)
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ten @ = -(X tan B; - ten 52) +

[(x ten By - ten Bo) - 1+ 2 tan B,(X tan By - ten 52):1 1/2

1/2

tange-Xtangld:[(x’cansl-tanEé>(Xtanal+tan32> -1

tan B, - X ten By * \/thaneﬁl - 'l',za,ng[;2 -1

W.

Yo _ tan B, - ten $ =X tan By ¥ \/x2tan2Bl _ tan252 i 1.
& .

tan®g, + 1

% (10)

V.
P 2
W;I = tan By ¥ N/tan By -

The plus sign for the radical in equation (10) is discarded since it
implies that ten § < tan By - sec By and Vp > Wo, -

Therefore,

» 4 1 - (re .
Wy We (11)

For an isolated rotor,

since We-l =U, and Vq=0 - Vp.

If it 1s assumed that the flow outside the stall cell is loss free
and that an isentroplc pressure coefficient CP may be used outslde the

stall cell, then

"
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Wy, cos By 2 _ 11+ tanzﬁz

Cp=l-[—2 ) =1..L__ — "2
le cos Bo X2 1+ tanaﬁl

1+ ta.n2[32

x2(1 - cp) == oy

Therefore, substitubing in equation (10) gives

Vp

7 ten B - \/ta.ngsl - (l + 'banEBl)(l - Cp)
X1

il

tan By - \/tanesl - (l - Cp) - ta.nzBl + Cp tangﬁl

tan By - N
cos‘?Bl

V. -
_Wp = ten By - ——ie P;' -1 (12)
Xy > prl

Equations (11) end (12) indicate that for stall cells of the type
assumed (P =M=1 and 0<Vp< Wel) real values of Vp &are possible

only if Wy < Wgy, Cp > cos®py, end B3 > 45°.

cated in figure 15, and Cp = cos2Bl. It is interesting to note that

this corresponds to the propagetion velocity predicted in reference 4
for & simplified cascade geometry and an entirely different type of
stall cell, where the upstream velocity perturbation was assumed to be
& sine wave of small amplitude and many blade chords wave length. In
reference 4, for this type of cell, it was shown that

Wel, ten § = tan B, - sec B,, &s indi-

. Vp _ 2(L - Cp)

le sin 2B;
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If CP = cosEBl,

2
Vp 2 sin®pq

= = tan Bl
le 2 sin B cos B,

where Vp = ng. The preceding analysis indicates that this is a

limiting value and that, for the assumed type of finite-amplitude stall
cells to exist, Cp> cosEBl. '

It is assumed in the preceding analysis that all the downstream
circulation is about concentrated vortices. The implication is that
the wakes shed from the bledes outslde the cell are thin enough or mix
soon enough to be neglected and that this 1s also true for the blade
wakes in the cell (or that the velocity through the blades in the cell
is small enough for the vorticity shed inside the cell to be neglected).
The assumption of P = 1, together with that sbove, Implies that the
blades outside the cell have no drag and those inside the cell have no ~
1ift. It is assumed that the analysis 1s valid for more than one cell
if they are spaced far enough apart so that equation (3) remains valid,
since the cells induce no velocity on each other except for their block-~
age effect on the main flow which is considered in the anelysis.

Since in a coordinste system fixed to the stall-cell pattern of
figure 10, the flow is steady and the streamlines are straight and
parallel downstream, the static pressure is constent downstream. There
is a "head loss" in the stall cell determined by the velocity defect
there, Just as in the case of a bluff body wake; and the fraction of
the downstream periphery covered by stall cells could be expressed by
a time averege loss coefficient of stagnetion pressure. The qualita-
tive nature of the flow for (P = N = 1) is similar to the flow about a
flat plete translating along the cascade at velocity VP and blocking

the flow through a portion of it.

Anelysis of Model for Small Perturbetions

It is noted that equation (7) gives a relationship between the
three paremeters (P, N, and ¢§) and was developed without any assumptions
regarding blade stall characteristics other than the sssumption of dis-~
crete vortices downstream. If another independent equation can be
derived between P, N, and @, by specifying the dynamic blade stall .
characteristics, Vp can be determined as a function of N only or of

the stall-cell amplitude.
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For small perturbations, M and N can be related to 1ift and
drag coefficients since for an isolated airfoil

Lift = T, = 3 LY,

and

CW

o=

The assumption is made, as in reference 3, that also for a cascade of
airfolls T'g = E%H L, wvhere W 1is the local mean velocity and Ty is

the bound vorticity et an ailrfoil. If CL is a known function of local

mesn eir angle B &as determined by the local incidence, M(N,$) can
be determined independently of equation (7.

It is difficult to determine W and B at the airfoils near the
stall cell for arbitrary values of N because the shape of lines (v)
and (¢) in figure 10 must be known. However, if N << 1, lines (b)
and (c) must be straight even near the cascade, and it becomes possible
to determine W and P by restricting the amplitude of the stall cell
to a small perturbetion.

For the velocity induced by a straight vortex street of finite
length, equation (1) -indicates that, except in the immediate vicinity
of the street, i1t _may be considered as a distributed sheet of strength
per unit length g; therefore, with the notation of figure 16, the

velocity components induced by an element of length dx are

I dx
AU = =—— —
u 5ma T sin ©
av = L dx cos ©
ona ¥

For & sheet of finite length, as in figure 17,

Xn
U = .l ;/‘ y &x = L (tant XL _ tan-1 X2
2ra JX] x2 4+ y2 2na y y
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r . xdx _ T [- 2. w2 2 4 42
Vo= —— = log, ( + y2) - log_(x12 + y=)
2ra JxX; x2 4 y2  lLga R

u=-—I‘-8
2z,

(13)

I To
Vv = —=— log, —<=
Pre e Ty

It follows that the veloclty induced. at the blade in the center of the
stall cell Vic, as shown in figure 18, is parallel to the streets and

equal to %% if m >> n. For various essumptions of Cp(B), it might

be assumed that the blades in the stall cell have a circulastion corre-
sponding to W and B at the blade in the center of the cell and Vp

‘can be calculated as a function of N.

However, values of P vwhich correspond to values of N as deter-
mined by the dynamic stall characteristics of the airfoll restrict the
curve of K against N +to an "operating line" similar to the dashed’
curve of figure 15. As N- 0, P— 0 and equation (8) becomes indeter-
minate, However, 1f 1t is assumed that ¢ must remain small as N - 0
for the reasons given previously, then from equation (7) P & 2N << 1.

It appeers, therefore, that for small perturbations, and small angles ¢,
the percentege of vortlicity the alrfolls shed upon entering a stall cell
must be approximately equal to the percentage of downstream axial veloc-
ity defect in the stall cell. Therefore, the reason that smsll-
perturbation stall cells are not commonly observed may be that & com-
pressor blade generally is thin, stalls from its leading edge during
stall propagation, and must shed a large percentage of its bound vor-
ticity upon stalling. This description appears to apply to the dynemic
stall characteristics of the airfoils used in the experiments although
in quasi-steady flow the alrfoils exhibit & continuous curve of Cp

against 1 even in stall as indicated by figures 19 to 22. It is shown
in the section entitled "Determination of Flow Properties From
Interferograms" that the airfoils display stall characteristics during
stall propagation which depart considerably from their quasi-steady
stall characteristics. It is felt that the sudden increase of i as
the alrfoils enter & stall cell causes them to stall abruptly from
their leading edges for the reason given in the section entitled
"Correlation of Analytical and Experimental Results," even though they
stall "gently" with a slow (quasi-steady) increase of 1.
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A qualitetive reason that a compressor blade should not shed a
small vortex from its leading edge during stall propagation is indicated
in reference 5 where it is shown that, for a flat plate moved impul-
sively from rest normal to its plene, vortices must form at the edges
of the plate (if infinite velocity is precluded) and that, during the
initial formation of these edge vortices, similitude of the flow
requires them to grow until they are not small in proportion to the
width of the plate. Of course, the stronger the vortex shed from a
cascade blade, the greater is the tendency for the adjacent blade to
stall as the vortex moves past it and the greater is the tendency for
stall propagetion; however, there 1ls no apparent reason why propagetion
of small perturbations should not occur except that this appears to be
precluded by the dynamic stall characteristics of the airfoils.

Since small-perturbation stall cells which are two-dimensional (hub
to tip in a rotor) and stable have never been observed experimentally to
the knowledge of the author, the analysis is pursued no further. The
discussion above is offered as & qualitative speculation (not an attempt
to prove) that for two-dimensional stall cells large perturbations are
more likely to occur as & stable flow pattern than small perturbations.

Prediction of & trend for the number of cells.- The vortex-flow
model used in the analysis appears to offer an explanation for the gen-
eral trend toward larger numbers of cells with increasing throttling of
flow as indicated by the experimental data.. The experimental results
indicate that with further throttling of the flow through an isolated
rotor after the formation of one stall cell the cell first grew wider
(n increased in fig. lO), then two cells appeared and grew wider,
and so forth until four cells appeared and surging flow began. The
vortex flow model indicates that if m is finite in figure 18, the
velocity induced by the stall cell at the blade in the center of the
cell, (Vi)c: decreases &as n/m increases. This effect can be shown

gqualitatively by assuming the lines (b) and (e) to be entirely straight.
Then from equation (13), if m >>n

As n/m increases, (Vi), decresses faster than near the edges of the

cell, there is more flow through the center of the cell than near the
edges, and the blade at the center of the cell tends to unstell, thereby
splitting the cell into two cells which become distributed axisymmetri-
cally around the rotor.

It does not appeer possible to predict when a stall cell will split
es n/m increases without detailed information regerding the dynamic
stall-unstall characteristics of the ailrfoils and the shape of the cell



28 NACA TN hl}h

(1ines (b) and (c) in fig. 10). The estimated relationship between ) -
n/m and (Vi), does not indicate much effect on (Vi) until

n/m > 1/5. The measured effect 1s much greater and is described . - :
subsequently. -

Summary of Analysis -

By making use of experimental data in order to develop & simplified -
enalytical flow model, a theory of stall propagation in an isolated
blade row has been developed which appears to be based upon fewer
restrictive assumptions than some of the earlier analyses. In the analy-
sis of the present paper, a restrictlon is imposed upon the nature of the
stall cells. Although the approximetion to the actual observed flows
eppears to be valid for all the blading, géometrical configurations, and
flow conditions for which the experiments described herein were run, it
is unknown how valild the approximstion is in general. It is speculated ' o
that the approximation regarding the nature of the cells might be widely
applicable to continuous cascades of thin airfoils where the flow extends
many blade chords downstream of the cascade. -

It should be noted thaet in the preceding analysis no proof of exist-
ence, equilibrium, or stabllity i1s given for the assumed flow model. .
The experimental data are offered in lieu of mathematical proof.

EXPERTMENTAY. INVESTIGATION OF ROTATING STALL _— L

Investigation in a Circular Cascade L

Description of apparatus and procedure.- With the sponsorship of
the NACA, & circular radial~outflow cascade was deslgned and installed
in the closed-circult wind tunnel at the Gas Turbine Laboratory during -
195%. The cascade was designed specifically for investigation of rotating
stall and is described in detaill in reference 12. In figure 23 is shown .__  _ -
a schematic view of the test section which includes a ring of variable-
angle guide vanes with which the air inlet angle to the test cascade Bq

can be continuously veried. Some dimensions of the test cascade are:

Radius to gulde vane trailing edges _ -
(veries with B1), in. . . « « v v v v v v ¢ v v v v v o . T.2 %0 6.7 -
Radius %o blade leading edges and measuring stations 1
and 2, respectively:
For configuration A, In. . . . . . + « « « « « « . T.91, T. 69, 8.9L
For configuration B, in. . v v & o o« + ¢ « o « o 66 8.4k, 9, 69 .
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Blade chord, In. « v v v v ¢« 4 4 o o o o & o o o o o o o 0 o 0.96
Blade span, In. . . & . ¢ i i 4t et e e e e e e e e e e 1.71
Blade profile NACA 65(12)10 as changed by circular

transformation

Number of DIades . «v « ¢ v v o o o o o o o o o o o 54, 27, 18, 9

Nominal solidities, 0 .+ « v v v v & v v o & o o o . 1, 1/2 1/3, 1/6

Simulated linear cascade 65(8)10
Mean 1ine & . ¢ v v v v v 6 4t v 4 ¢ o o 6 o o e & 0 e 0 o 1.0

Some adventages of the cascade geometry are:

(1) The flow is two-dimensional through the cascade neglecting the
wall boundary layers.

(2) Optical messurement of the flow through a portion of the cas-
cade is possible.

(3) A continuously rotating stall pattern can be established, which
is not possible for a finite-length linear cascade.

Some disadvantages are:

(1) Because of the radial flow, the pressure distribution about
the airfolls is not precisely the same for a given pressure rise through
the cascade as in a rotor or linear cascade. As described in reference 12,
& correction was made for this effect by designing the cascade through
the conformel transformation of one linear cascade so that the adverse
pressure gradient on the suction side of the airfoils in the transformed
circular cascade was approximately equal to that for & second lineasr cas-
cade which was simulated. It was found that the circular transformstion
of a linear NACA 65(12)10 cascade gave approximately the same adverse
pressure gradient on the circular cascade blades at the design point as
was obtained for a linear NACA 65(8)10 cascade. The data for the linear-
cascade pressure distributions were teken from reference 13. The degree .
of success of this procedure 1s indicated in the section "Determination
of Flow Properties From Interferograms” where the pressure distribution
about the circular-cascade blades is celculated and compared with the
distributions from reference 13 for one value of 1i.

(2) The flow field downstream of the cascade is necessarily rather
short which eppears to have & pronounced effect on the rotating stall
cell pattern as discussed in the section "Correlation of Analytical and
Experimental Results.”
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In reference 4, an ekperimental investigation of rotating stall
in the circular cascade 1s described, which was conducted to determine
the detalled nature of the flow and to ascertain the effects of Mach
number, Reynolds number, mean incidence, and cascade solidity on the
propagetion of stall cells in the cascade. The experimental work
described herein is a continuation of this investigation. The proce-
dures and instrumentation are lergely the same as those described in
reference 4 except for the use of the Gas Turbine Laboratory portable
Mach-Zehnder interferometer and & ‘piezoelectric crystal préssure pickup
described subsequently.

The purpose of the present investigation is to extend the data of
reference 4 to include the effects of lower Gascade stagger angle, of
higher mean incidence to the cascade, and of increased clesrance between
the guide vanes and test cascade. Quantitative messurement of the pres-
sure fleld in a portion of the cascade during stell propagstion is also

attempted by means of high-frequency interferometer pictures.

A1l of the tests in reference 4 were made with a cascade stagger
angle A\ fixed at h3° The highest angle to which the guide vanes
could be turned gave an entering elr angle g7 to the cascade of 69°;

therefore, the highest mean-flow incidence angle 1 possible was 26°,
Stall propagation started at 1 = 20°. 1In reference 14, it was observed
that stall propagation existed in a rotor-plus-guide-vane axial compressor
stage for 34° < i1 < 479 (relative to the rotor et mean radius). There-
fore, it was deemed desirable to alter the linkages to the guide vanes
to permit greater incidences to the.circular cascade. It was noted in
the schlieren pictures presented in reference 4 that, during stall prop-
agation in the circuler cascade, when an airfoll stalled some of the
fluid from the separated boundary layer was washed around the leading
edge of the succeeding airfoll before it stalled. In hope of decreasing
this effect and in order to increase further the incidence on the cas-
cade airfoils and to observe any other effects on the nature of the flow,
the stagger angle of the cascade was changed from 43° to 31°., TFor the
altered guide-vane linkages and reduced stagger angle, the range of 1
was from 13° to 53°, With these two alterations,- the following data,
similer to those presented in reference 4, were taken at the reduced
stagger angle and over a greater range of incidence during stall
propagation. . -

Throughout the investigation in & circular cascaede, Cp 1s defined
as the ratio of time-average static. pressure. rise through the cascade
: : . Py, =D, -
to the dynemic pressure of the flow entering Ig—-—;%, where P, and
| 5 Py |
p; are wall static pressures as measured by the average of three equally

l

Cllh

F

s
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spaced taps at measurlng station 2 and three at station 1. It was deter-
mined that each of the boundary layers on the cascade walls wes less

than l/8 inch thick before the onset of stall propagation and they are
neglected henceforth.

In all the series of schlieren and interferometer photographs such
as figures 1 and 2, time is from right to left. Flow 1s from left to
right in each frame. A1l the schlieren photographs were taken at 5,000
per second and all the interferometer photographs at 6,000 per second.

Experimental results - configuration A.- Pressure coefficient
as a function of By for cascade solidity of unity is shown in figure 19
for two levels of Reynolds number Rej. The conventional (C )max is at

By = 46° in figure 19. Subsequent hot-wire data and schlieren pictures

indicate that periodic stall propagetion occurred at the pesks in the
curve where B, was 5O, 62°, and 68° and where values of p; were

greater than 790. On each side of the pesks the stall cells gradually
became intermittent and of lower amplitude, and between the peaks the
flow was relatively steady in time, Visual observation of the flow
through the schlieren apparatus for values of By between the peaks of
figure 19 showed that the flow was completely separated from the suction
side of the sirfolls.

As p1 was varied, the mass flow through the test section was held

approximetely constant; therefore, Reynolds number and Mach number
incresse with B for each curve plotted, as indicated in figure 19.

It is noted in figure 19 that there was a dilstinct effect on Cp
caused by change of Reynolds number for 58° < p; < 74O, At the lower

Reynolds numbers propagation no longer occurred at the band of B, cen-
tered at 62° and the band st 68° became nerrower. When the Reynolds
nunber was decreased to 50,000 both of these bande disappeared, but-
propagation at the 54° band became more violent and periodic, and the
band at T79° was not affected noticeably.

Schlieren photographs of the flow were taken in each of the bands
of By for which there was stall propagation. The same equipment was
used as in reference 4 with the 5-inch portable schlieren aspparatus of
the Gas Turbine Laboratory altered to use an Edgerton, Germesheausen, and
Grier type 501 stroboscopic light source and a General Radio Corporation
35-millimeter camera. Sections of each of these four fllms are shown
in figure 24.

The velocity of propagation end the number of cells in each band of
B1 were determined from these f£ilms_and hot-wire velocity measurements
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made upstream of the cascade at a radius of 7.69 inches. These data
are presented in figure 25 together with values of Vp/Crl predicted

for & circular cascade by the equation on page L2 of reference i,
(Values for Bo used in this equation were determined by extrapolation
from the values measured in schlieren photographs before the onset of
stall propagation as was done in ref. 4.)

Traverses of the hot-wire probe across the span of the cascade air-
folls indicated that the flow was two-dimensional for all the bands except
for values of B9 greater than 790 where the velocity fluctuations
were about twice as great near the walls as in the center of the blade
span. Typical hot-wire traces taken at r 7.69 inches for the four
bands of propagation are shown in figure 26 The hot-wire equipment
used was a Flow Corporation model HWB hot-wire anemometer and another
similar unit with hot wires of 0.003-millimeter diameter and 0.0OL4-inch

length.

By careful examination of the negatives froﬁ which figure 24 was
made, one can dlscern the wakes from the upstream guide venes. It wes
attempted to meke one wake more visible by heating a turning vane with
soldering iron filaments brazed to each end. However, no effect could
be noticed in the pictures. In figure oli(a), during the first band of

By for which there was propegation, neither_ these wakes nor the fluid

from the adjacent separated airfoils were washed over the leading edges
of the airfoils during stall propagation. In figure 24(b), & turning-
vane wake just barely flicked over the leading edge of each blade before
it stalled and not much of the separated fluld from the adjacent blade
was washed over. In figure 24(c), the same wake as in figure 24(Db)
crossed back and forth over the leading edge of each blade and more of _
the separated fluid was washed over. In figure 24(d), the wakes cannot
be detected. It is probable that the wakes and separated fluid injected
into the blade boundary layers had an effect on the time required for
the blades to stall. This may have caused the great increese of propa-
gation velocity from figures 24(a) to 24(b). This effect is more evident
when VP/CGl is calculated rather than vp/cr . For the bands in order

of increasing values of " B, Vp/Ce was 0.13, 0.28, and 0.25, Thus,
VP/Cel increased by a factor of 2 from the first to the second band

and then remained virtually constant.

Becasuse the stall cells were not all precisely the same size and
shape for a given mean flow, there is.an uncertainty in measuring V.
and the number of cells. It is believed that the uncertainty in deter-
mining the number of cells was less than five for the first band, three
for the second and third, and zero for the last band at 71°, The
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uncertainty in VP is sbout 12 percent for the last band, 8 percent for
the first, and less than this for the other two as indicated in figure 25.

When half the blades were removed from the cascade, this being the
only alteration, the following experimental results were obtained for
configuration A, at a value of o = 1/2. Pressure coefficient Cp 1is

plotted against By 1in figure 19 so that comparison can be made with

the data for o of unity. It is observed that for o = 1/2 there was
& mean pressure drop through the cascade for some values of f;. Hot-

wire traces showed that the first band of B; for which there was stall
propagation was at 540 and was very narrow. The signals were never
periodic but were intermittent with occasional lapses to high-frequency
turbulence. For 60° < B < 64° a periodic signal was observed as

shown in the photograph designated E in figure 26. For 64° < By < T9°
there were low-amplitude unperiodic fluctuations in the flow which
became more distinet for B < 79°. Traverses of the hot wire indicated

that the velocity fluctuations were two-dimensional and periodic only
for 60° < gy < 64°, In the 54° band, velocity fluctustions existed

only in the center third of the blade span and for B, < 79° only in
outer thirds of the span near the walls.

Schileren plctures were taken for B = 60° and a section of the
film is shown in figure 9. From the film and hot-wire traces the num-
ber of cells and their velocity of propagetion were determined and are
indicated in figure 25. In figure 9, the wakes from two of the guide
vanes are visible. (They heve been darkened to aid in reproduction.)
From the motion of these wakes it is apparent that the unsteady fluctu-
ations in the flow are large. It 1s observed that the wakes briefly
cross over the leading edges of the cascade blades as they fluctuate.
In figures 24 and 9, the boundary layer appears to separate from near
the leading edges of the airfoils when they stall and to reattach when
they unstall.

When the Reynolds number was lowered below 50,000 for a value of
o = 1/2, the velocity fluctuations became nonperiodic and of very low
amplitude for all the bands of B4 where stall propagetion had existed

at higher Reynolds numbers.

In figure 12 is seen a section of an interferometer film teken for
configuration A with o = 1/2 and B = 60° Re; and M; are 333,000
and 0.47, respectively. The bands in figure 12 indicate lines of con-
stant mean air density, which correspond to lines of constant pressure
if isentropic flow can be assumed and lines of constant velocity megni-
tude also where the time rate of change of veloclty can be neglected.
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The striking feature of figure 12 1s the distinct appearance of the
vortices shed from the leading and tralling edges of the airfoils.

erimental results - configuration B.- To determine the effect
of interference between guide vanes and test cascade, the radii of the
test cascade and the static pressure taps for measuring p; and Do

were increased three-quarters of an inch to configuration B. This
effectively doubled the clearance between the blade rows and shifted
their relative angular position approximately 30 gbout the axis of the
test section. '

In figure 20 CP is plotted against p; for configuration B and
¢ = 1. Comparison with the corresponding Cp curve for configuration A
from figure 19 indicates that the increased clearance had no pronounced
qualitative effect upon Cp, although values of Cp were generally
greater for configuration B. The bands of f; where stall propagation

existed were shifted a few degrees, which was probably caused by the
sngular shift of the blade rows from configurations A to B through the
effect of the turning vane wakes on the dynamic stall characteristics

of the cascade airfoils. There were also detalled effects on the flow
caused by the increased clearance. Periodic two-dimensional stall prop-
agation existed at By = 57° and 63°, Low-amplitude, low-frequency,

unperiodic fluctuations existed for 50° < B; < 53° and for py > T78°.
Flow was relatively steady between the peaks of By 1in figure 20, as

was described for figure 19. Figure 27 shows three interferograms of
the flow at incidences where the flow was comparatively steady. Inter-
ferometer pictures were teken at B; = 57° and 64° and are presented in

in figure 1. The nunber of stall cells and their velocity of propagation
as determined from these pictures are shown in figure 20.

When the cascade was assembled with 27 blades (o = 1/2), it was
found that stall propagation existed for 53° < g; < 680, However, the

perturbations were two-dimensional and periodic only for 56° < By < 66°.

It was found thet decreasing the Reynolds number made the fluctuations
less periodic and of lower amplitude. Interferometer pictures were
taken for By = 589, 61°, and 64° and are presented in figures 2(a) to

2(c). (The pictures for By = 61° are used to calculate the pressure

field during one cycle of the motion described in the following section.)
The following data apply to figure 2:
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Figure | By, deg Nu?ZiESOf V?/Crl VP/Cel Cp Rey M3
2(a) 58 15 to 16| 0.78 0.42 10.25 | 266,000 | 0.30
2(b) 61 19 %o 20 .87 43 .15 {235,000 { .37
2(c) 6L 14 to 15| 1.00 A5 .13 {200,000 | .31

The cascade was reassenbled with 18 blades (o =
found that periodic two-dimensional stall propagation existed only for
narrow bands of Bq about 57 and 70

these two values of B;

apply to them:

1/3) end it was

Interferometer pictures at

are shown in figure 3 and the following data

Figure | B,, deg Nugziisof Vb/crl Vp/Cel Cp Rey My
3(a) 57 7 to 8 1.27 0.83 [0.15 |255,000 | 0.31
3(Db) 70 18 147 .91 .058 | 264,000 | .32

When the cascade was assembled with nine blades (o = 1/6), it was
found that hot-wire traces upstream of the cascade indicated only
varying-emplitude high-frequency velocity fluctuations as B was

At By = 57°, however, the fluctuations appeared to be inter-

mittently periodic and interferometer pictures were taken as shown in
figure 4. The freguency with which the blade stalls in figure 4 is
approximately 790 cps, Re; = 250,000, and W; = 292 ft/sec.

Increased.

In reference 6 is described an experimental investigation of the
Kdrmdn vortex shedding of a flat plate at high incidence i. It was
found that for 20° < i < 60°

0.16% < EEL%%E_E.< 0.150

where F 1s the frequency at which vortices were sghed from one edge of
the plate. The result of calculating EL—%%E—E from the preceding data

for configurstion B and plotting it against o 1is shown in figure 5.
Although there is considerable scatter in the data, it is observed that,
as was shown by & similar plot for A = 43° in reference L, the frequency
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with which & blade stalls during stall propagation in the cascade appears

to approach the Kérmdn vortex shedding freqpency of the isolated flat
plate as the solidity of the cascade is decreased.

Determination of flow properties from interferogrems.- From inter-
ferometer photographs of a two-dimensional flow, 1t is possible to deter-
mine the pressure field by conventional procedures. The purpose here
is to determine the pressure distribution around the circular-cascade
airfoils and to estimate the strength of the shed vortices during stall
propagetion. Also, the pressure distribution before the onset of stall
propegation in a circular cascade is compared with that of the simulated
linear cascade,

The use of interferometry to obtain quantitative information about
two-dimensional pressure fields which are unsteady in time is no more
difficult in principle than it is for steady flows, but practical dif-
ficulties are encountered in the photography and direct pressure measure-
ment required. As used herein, the properly adjusted interferometer
produces fringes or bands, such as those in figure 2, which indicate
lines of constant density. No indication Ts glven in the interferogram
of the density level but only of the absolute value of the density dif-
ferences between fringes. The sign of the denslity change between fringes
1s determined from the schlieren pilctures and from a qualitative knowl-
edge of the flow. It is necessary to determine independently the value
of density at some point 1n the interferogram at the instant the picture
is teken. This 1s done by the determination of two other independent
fluid properties at the point which are pressure and entropy. The
entropy is assumed constant everywhere in the interferogram (except in
the cores of the vortices) and is evaluated upstream of the cascade
where the flow is relatively steady and fluld properties can be measured
convenlently. The static pressure fluctuations with time are measured
at a point in the interferogram with a ministure crystal pressure pickup.

Interferometer: A porteble Mach-Zehnder interferometer with 5-inch-
diameter optical elements was used in this study. A detailed discussion
of the design and operation of this instrument is given in reference 15,
Only brief mention of its use will be made here with special reference
to the present application. Apertures of 1/16- and 3/32-inch diameter
were used at the focael point of the collimating lens causing the light
to emerge from the lens as & parallel beam. At the first splitting
plate the beam is divided into two halves which pass respectively through
and around the test section before belng recombined at the second
splitting plate.- The fact that one beam does not traverse the test-
section window 1s compensated for by including in its path two glass
plates which are optically similar to those of the test section. The
resulting beam is focused on the film. The image produced on the film
depends on & comparison between the two optical path lengths.

[N
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With no flow in the test section and & small angular displacement
between the splitting plates, a serles of parallel interference fringes
results. If these bands are originally spaced infinitely far apart, by
setting the mirrors exactly parallel, any fringes which appear in the
flow picture will be lines of constant density. Some loss of accuracy
results from imperfections in the optical elements precluding infinite
band spacing. The interferometer optics, test-section windows, and
compensating plates combined gave & minimum of one fringe instead of
the zero number of fringes implied by perfect optics and exsctly par-
allel mirrors.

A concentrated light source is required to expose the film. The
source used was an experimental xenon-filled lemp, & photograph of
which is shown in figure 28. It is capable of flashing for approxi-
mately one microsecond at rates of 60 to 8,000 per second when used
with the Edgerton, Germeshausen, and Grier type 501 stroboscopic modu-
lator. -Its small size, large amount of light flux, reliability, and
long life meke 1t very satisfactory. The light was filtered to give
the monochromatic light necessary to the interferogrem evaluation using
an interference filter which passed a band of wavelengths 100 angstroms
wide centered at 4,500 angstroms.

Pressure measurement: A miniature crystal pickup capable of sensing
high-amplitude, high-frequency pressure fluctuations is shown in fig-
ure 29. It is & piezoelectric, barium-titanite crystal in the shape of
. & hollow cylinder 0.12 inch long by 0.09 inch outside diameter. It is
inserted in & drilled hole in one of the optical flats at a measuring
point midwey between two airfoils shown in figure 2(b). It is mounted
flush with the inner surface and senses the wall static pressure. A
drop of glue in the end of the cylinder acts as a safety valve and seals
the crystal so that, when the test-sectlon pressure is applied to its
outside surfaces, hoop tension stresses are produced which cause mechan-
ical strains and the accumulation of electrical charge on its inner and
outer cylindrical surfaces; & voltage results which is sent through a
high-impedance amplifier and displayed on an oscilloscope. Since the
impedance of the circuit is not infinite, the charge produced on the
crystal faces "leaks off" which prevents its use in meassuring low-
frequency pressure fluctuations.

To determine the rise time of the pickup to & step change in pres-
sure, the pickup was mounted in the wall of a shock tube which is
described in reference 16. The rise time was less than 0.05 millji-
second, very adequate for the intended use. The pickup may be cali-
brated by determining its sensitivity to temperature and observing how
quickly electrical charge leaked from the faces of the crystal; a device
described in reference 17 was used rather than the shock tube because
of its convenience and religbility. The device makes use of a rotating
velve to switch a small test chamber between two large tanks of air at
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different pressure levels. It was concluded that the distortion due to -
charge leakage and temperature sensitivity could be neglected.

A convenlent method of synchronizing the pressure trace on the
oscilloscope with the interferometer photographs is to project both on
the same film as in figure 2(b). With the oscilloscope set so as to
suppress the time (horizontel) axis and with the film stationary, the
pressure trace is focused on one-half the film and set above a conven-
ient reference line in the interferogram, the wire which connects the.
trailling edges of the blades. With the film in motion and the time
axis thus provided, synchronization is complete. The amplitude of the

pressure fluctustion at the measuring point in an interferogram is given |

by the intersection of the wire and trace. Since the crystal does not
record & steady pressure, this fluctuating component of pressure must
be added to the time mean static pressure measured with a wall static ._
pressure tap directly opposifte the crystal location (a 1/8 inch-dismeter
hole drilled in the opposite optical flat). The scale in figure 2(b)
indicates the value of the mean pressure and_the magnitude of the fluc-
tuating component at the measuring point.

For pressure variations small with respect to the mean pressure,
(in the present case 0.9/18), the maximum error incurred in assuming
the pressure at the measuring point to be equal to the mean pressure
is small (5 percent). Of course, 1t was necessary first to measure
these fluctuations to determine whether they could be ignored. Pressure
distributions other than those for figure 2(b) were calculated neglecting
the pressure fluctuations at the measuring point.

Measured pressure distributions: The most common ordinate in use
in the presentation of pressure distributions from steady flows in ces-

cades seems to be S = EQ_:;E;EQQL. That this is also é meaningful
pw . N = . -
parameter for use in unsteady flows may be shown as follcws'

In an unsteady flow ¢ + p + EEE = Constant = (o) - Where

¥ = Velocity potentlal. If one Integrates with respect to time over

one cycle and requires that { make no net contribution for this period

otherwise. the time mean value of (p + 1 pv?) monatonically increases or

2
decreases),
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T

1 2
(p + 5 pv=)dt
f g ) =C = f M = Time mesn Po = (Po)_m
T

Therefore, for an unsteady flow,

1
SE(PQ)—«)"P=J{+§pv2
1 4.2 1 7.2
3 WL 5 PWL

Although in a steady flow S must alweys be positive, the preceding
discussion shows that in an ungteady flow S may be negative in certain
regions and periods in which V¢ is & large negative quantity.

The pressure distributions corresponding to each of the ten frames
of figure 2(b) for one period T of the motion are shown in figure 30.
Generally, they bear little relation in form to the conventional graphs
of pressure distribution. This is to be expected, however, for not only
is the flow unsteady, but the effect of vortices in the field represents
& major departure from conventional flow. Figures 30(c), 30(h), and
30(1) show negative values of S. The circled data points in figure 30
are obtained from the interferogram fringes of figure 2(b) and by inter-
polating half fringes.

At the beginning of the cycle (frame 1 of fig. 2(b)), the blade has
shed a counterclockwise vortex from its trailing edge, and the vortex
shed from the leading edge of the preceding blade is coming into view.
The latter vortex should have a strong effect upon the blade circulation
according to the analysis presented previously. One would expect from
this analysis that, in order for the Kutta condition to be maintained,
the circulation around the blade in frame 3, figure 2(b), would be large.
This is verified qualitatively from the pressure distribution of fig-
ure 30(c) and from figure 31, & graph of Cp against t/t as deter-
mined from the pressure distributions of figure 30. On the other hand,
the blade circulation decreases as a shed vortex leaves its leading edge
and the effect on the blade pressure distribution is clearly indicated
in figure 30.

Local incidence angles at the blade were estimated from the schlie-
ren pictures of figure 9, which show the wakes of the upstream nozzles
darkened somewhat for reproduction purposes. These estimated values
of i are plotted in figure 32 against t/1. The error caused by the
motion of the wakes and the difference in clearance between blade rows
in figures 2 and 9 is neglected. Using a common time axis t/T, one may
plot Cp, as calculated from figure 31, against 1 from figure 32 to

obtain information about time lags between local incidence and Cy,. Such a
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plot is shown in figure 33 which indicates thaet a phase leg does exist
between 1 and Cp. This 1s the usual result, and the explanation

seems to be that the presence of a counterclockwise vortex near the
trailing edge has a negative effect on the blade circulation compared
with its effect after having been washed downstream; the reverse is
true for the leading-edge vortex as shown previously.

The pressure trace in figure 2(b) clearly shows the presence of the
shed vortex. At the beginning of the cycle, when vortices are orilented
so as to cause low velocity at the measuring point, the trace indicates
high static pressure. At about the fifth frame, when a vortex is gquite
close to the pressure pickup and oriented so that the velocity is high
there, the trace indlcates low statlc pressure.

The magnitude of the blade force calculated from the sequence of
figure 30 varied from 3 to 7.5 pounds. Although the blade force in the
chord direction was calculated, these forces were small enough to be
neglected. - Hence the normal force is approximately equal to the blade
vector force.

With the above experimental information, one can also show the
"BSen effect," which is that in the unsteady growth of 1lift on a wing
accompanying a sudden increase in the angle of attack an increase in
the value of maximum 1ift occurs. In reference 13 a graph of 1ift )
coefflcilent against incidence is given and the results may be compared
with those of figure 33. At an incidence angle of 20° (for which the
steady state Cy, 1is a maximum of 0.68 from ref. 13), figure 33 gives

values of 0.7L and 1.45 for C;, during the unsteady flow. The maximum
velue of Cp from figure 33 1s 2.1. There 1s some error involved in
this comparison since both Cp and Cy are based on the average

upstream dymamic head rather than on the instanteneous local value;
however, the above calculations appear to demonstrate that there is
considerable departure from thelr quasi-steady stall characteristics by
the airfoils in question during stall propagation as speculated previously.

In order to verify the design technique used to simulate & linear
cascade wilth the circular cascade, the alrfoll pressure distribution was
calculated for B = 46.4° from figure 27. The pressure distribution
for the equivalent linear cascade.%ﬁKCA 65(8)10) is given, for certain
combinations of solidity, incidence, and other factors in reference 13.
To compare the two distributions it 1s only necessary to reduce the
circular cascade distribution to that of a linear cascade, using the
transformation given in reference 12. Of course, the comparison must
be made for equal values of o, A, 1, and so forth. Thus, in fig-
ure 34, the transformed pressure distribution corresponding to By = L6 40

has been compared with the appropriate distribution of reference 13.
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This comparison indicates some success in the attempt in designing the
circular cascade to duplicate the pressure gradients on the suction
side of the blades. The apparent difference in blade loading is to be
expected from the circular transformation.

Estimation of strength of shed vortices: It is possible to esti-
mate the strength of a vortex moving past & point where the pressure is
measured as in figure 2(b). Advantages of this method are that no
measurement is required near the core of the vortex where losses are
high and that the strength of an "egquivalent potential vortex" can be
estimated.

The vaeriation of p, static pressure at the origin, when an isolated
vortex I’ moves along & line (y = Constant) with the free-stream veloc-
ity C in an infinite field, can be determined in a coordinate system
fixed to the vortex and is given by

r )2
Dy - P (2:n:bC

L oc2 52-+ 1
b2

where the coordinates of the vortex are (x, y = b).

An estimate of the circulation about an airfoil can be made by
using the Kutta relationship L = pWl'; and substituting approximate

measured values of L, p, and W. Applying these two relationships to
the ninth frame of figure 2(b), in which the blade circulation is nearly
minimum (and neglecting the effect of adjacent blades), gives an esti-
mated ratio of blade circulation T’y to shed vortex strength I' of
0.19. However, because of the inaccuracles involved in this calculation,
a direct exsmination of the interferometer pictures probably yilelds as
good an answer. In figures 1 and 2, it is observed that after the air-
foils stalled there was virtually no difference in fluid density at
points which are at the same chordwise position on the airfoil but on
opposite sides. Neglecting the local time rate of change of velocity
and losses, this indicates that the pressure and velocity were almost
equel at these points and that the circulation about the airfoll must
have been small. Therefore, it appears that the circular cascade air-
foils shed nearly all of their bound vorticity when they stalled as
assumed in the analysis.

Discussion of results.- The experimental results from the circular
cascade indicate that stall propagation occurred for narrow bands of
mean incidence during which the blades periodically shed nearly all
their bound vorticity in the form of discrete vortices. It appears
thet the airfoils consistently stalled from their leading edges during
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stall propagetion and that between stall cells the flow reattached to
the suction side of the airfoils.

Although the washing of the gﬁide-vane wakes over the cascade air-
foils had an influence on the flow as dlscussed previcusly, this does
not appear to be the reason for the distinct bands of B; &t which

propagation occurred. The effect of Reynolds number on stall propags-
tion was pronounced at some mean incidences but not at others. There
was no pronounced effect on Cp caused by the increase of clearance
between blade rows for o of unity but Vp increased and the number

of cells decreased.

The analysis of reference 4 predicts that the effect of increased
clearance is to decrease Vp but that Vp should increase for fewer
cells. The present analysis indicates that the effect of decreasing
the extension of the flow field downstream of the circular cascade,
which was associated with the increase of clearance, should have caused
a tendency for the number of cells to increase. The fact that the num-
ber actually decreased indicates that the effect of increased clearance
was more important than the effect of decreased downstream field in
determining the number of cells in this case.

It i1s noted that for configuration B, Vp/Cel was essentially con-

stant for each value of ¢ but increased as o decreased. It is prob-
able that this increase was caused in part by the effect of a decreased
number of boundary-layer time delays (associated with blade stalling).
Furthermore, from figure 8 it can be seen that the induced effect of

the circulation sbout airfoil (a) upon the shed vortex I’ tends to
decrease its transport velocity. This effect tends to increase Vf as
o decreases independently of the effect of boundary-layer time delsy.
The frequency of stall propagation appears_to have_apprggqhgd_theWKérmén
vortex frequency for an isolated plate as o decreased.

It was observed during the experimental work with the circular cas-
cade that some of the stall-cell patterns were sensitive to small dis-
turbances in the flow. For instance, in one case (for o = 1), stall
propagetion could be prevented by the insertion of. a l/8-inch—diameter
hot-wire probe upstreem of the cascade. On the other hand, at one time
during the testing, 8 of the 5k cascade blades falled and were washed
downstream and no pronounced effect was observed on stall propagation
except that the flow was slightly less periodic than it was with uniform
blade spacing. Therefore, the stablility of the stall-cell patterns and
the effect on stall propagation of destroying the axial symmetry of the
flow appears to vary a great deal with mean flow condition in the cir-
cular cascade. No hysteresis or time-delay effect could be discerned
between the stall-cell patterns in the circular cascade and the guide-
vane setting (incidence).
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Investigation in an Isolated Rotor

Description of apparatus and procedure.- This investigation was
undertaken to extend the available experimental information about the
detailed nature of flow through an isolated rotor during stall propaga-
tion. The equipment used was virtually the same as that described in
reference 14, where & similar investigation was made for & guide-vane
rotor and a guide-vane rotor-stator combination. Figure 35 1s a sche-
metic diagrem of the research compressor showirng the measuring stetions.

The essential dimensions of the single-stage axial compressor used
in this investigation are:

Hub-tip ratio & . & & 4 v 4 4 6 0 et e e e e e e e e e e e e 0.75
Tipradius, in. « . . « . & ¢« ¢ ¢ v v v v v v 4 e e e e e .. 11,63
Mean radius, in. . . . ¢ ¢ ¢ v ¢ v v v 4ttt e e e e e e e 10.27
Blade chord (no taper), M. « v v v v v o o o & o o o o 0 0 o 1.51
Camber angle 8, deg . o +v v o + ¢ « « o « « o s s s o s o o o 50.3
Linear twist, root to tip, deg . . . « v ¢ ¢ v v ¢ 4 v 4 4 . . 9.7

The blades were a circular-arc camber line, with an NACA 00lO thickness
distribution (10 percent maximum thickness at 30 percent chord).

The rotor blades were unshrouded, and their bolt type of fastening
allowed the stagger angle to be easily changed. The constant area
annulus extended 29.8 inches upstream and 36.5 inches downstream of the
rotor. Radial air-flow entrance was through screens. The outflow
annulus was a diverging cone. The inner wall cone could be traversed,
thereby varying the exit annulus area and throttling the flow.

The following three rotor configurations A, B, and C were tested:

Configuration Me&n-raiiugestagger, Mean-radius solidity,
’ £ o]
A 30.2 1.02
B 30.2 .51
¢ 52.7 1.02

Except where indicated, the rotor was operated at 1,500 rpm
(U = 134 ft/sec at mean radius) for all configurations.
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The relative inlet velocity during stall propagation was 14O to

160 ft/sec, which resulted in a Reynolds mifiber based on the blade chord

of 110,000 to 150,000.

The conventional instrumentation consisted of inner- and outer-wall
static pressure taps at five axial positions (C, E, F, FG, and G in

fig. 55), kiel probes, a five-hole probe which was used for yaw measure- _

ments, and sphere-static probese. The pressure measurements were read
on an inclined water mesnometer. The five-hole probe was nulled with
the use of a Statham gage. )

The probes used for measuring unsteady velocities were tungsten . .
hot wires 0.00015. inch in dlameter and 0.0hk4 inch long. The direct-
current circuits of two constant-current hot-wire anemometers were used.
The voltage signals from the hot wires were applied directly to a Dumont
304k dusl-beam oscilloscope. The amplifier and standard calibration pro-
cedure of the anemometer (model HWB, manufactured by Flow Corporation)
for high-frequency fluctuations was not usable, since large low-frequency
fluctuations were being investigated. Drift in the direct-current cir-
cultry caused differences in the hot-wire calibrations immediately before
and after a run of 1/2 hour length as great as 25 percent., The calibre-
tion which came closest to being consistent with the steady-state
readings before stall propagetion started was used. It is felt that
the accuracy obtained is sufficient to indicate certain trends in the
data which will be discussed.

Since the hot-wire signal indicates only the component of velocity
normal to it (over a wide range of angles within a small percenteage
correction), total velocity, axial component, or tangentiel component
was measured by orienting the wire along radial, tangential, or axial
direction, respectively (assuming that the radial velocity component
can be neglected).

An unsteady angle-measuring probe was developed during thls inves~
tigation. As shown in figure 36, it consists of & tube which slips _
over & standard hot-wire prdbe. The tube 1is sealed at the end and has
two small holes drilled 120° apart at its midsection similar to a stand-
ard cylindrical yew probe., A thin wall is soldered inside the tube
near the hot wire to reduce turbulence.

If the probe is not nulled in & streaming flow, there is flow
through the probe which the hot wire sensés. This probe is sensitive
to low velocities and it can be nulled within #2°. TIts response is
fast enough to indicate stall cells passing by it. Since the downstream
velocity profiles during staell propagaetion were approximately square
wave shapes, one could null the probe by observing the scope trace and
thereby measure the angle of flow, either inside or outside the stall

cells.
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To obtain permanent records of the oscilloscope traces, & Polaroid
Corporation camera and a strip-film camera were used. The latter is a
camere without a shutter but with a constant-speed film drive. The
number of stall cells or , the angle at which the cells extended down-
stream, was determined by the relative displacement of two traces,
recorded on strip film, of hot-wire probes located at different axial
stations.

The stall-cell frequency was determined by synchronizing a sine-
wave voltage from a frequency generator on the x-axis input with the
hot-wire velocity signsl on the y-axis input of the oscilloscope.

All probe readings except wall static pressures are values at the
mean radius unless a radial traverse is indicated. TUnsteady static
pressure readings are at the outer wall and were measured with two
inductance-type electrical pressure gages described 1n reference 18.

Experimentsl results - configuration A.- The time average pressure
coefficient Cp as determined by the average of the inner- and outer-
wall static pressures and the upstream relative head 1s plotted in
figure 21 against B,, where

_Pg - Pg
Cp.y =
ca lpW2
2 c
. =T " Pm
Per "1 2
2 P

Pressures were measured at the stations indicated. The factors W, &and
Bo Wwere determined by measuring C. with a sphere static probe.

The number of stall cells and their velocilty of propagation are
given in figure 37, together with values of Vo predicted in reference k4,

for no downstream pressure fluctuatlons by

Vo _ 2(1 - CPCC—)

C
x sin2gcﬂ.._+l
1 cos Bg
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where B = Number of cells. The values predicted in reference 2 are
the same as in the "channel theory" of reference 3 for no phase lag,

YooY
Cx sin 2B¢

In figure 38 are shown unsteady wall static gage pressures measured
at stations E and FG. It 1s observed that the upstream fluctuations are
consistently several times as large as those downstream.

A series of hot-wire traces corresponding to measurement of CeG
and CxG is shown in figure 39. Traces for CxG and CxE are shown
in figure 40. The apparent difference in the average velues of CxG
and CxE in figure 40 is probably due to error in calibration of the

hot wires caused by "direct-current drift" in the hot-wire circuitry as
discussed previously, since these values must be constant because of
continuity.

In figure 41 are given the results of calculating (We and

G)o
(WeG)i from the hot-wire traces of figure 39. In figure 42 are (CxG)o
and (CxG)i as calculated from figure 40 and CxC from sphere static

probe readings.

The measured values of (CxG) are less than those of Cxc for
o

Bo < 58° in figure 42. This does not appear to be physically possible
c

because of the blockage effect of the cells. It is felt that again this
is a calibration discrepancy since CxC must be the average value of

Cx,  because of continuity. Using this fact, the value of (CXG> esti-
%g o %

mated for the hot-wire trace at B, = 56.7° is 95 ft/sec. Since all
the data indicate that (CXG_)o is essentially constant with throttling

except for extremely high values of B,, it 1s probably a good approxi-
mation to take (?xG) as constant and equal to 95 ft/sec as indicated
o]

in figure 42.

The flow angle (GG)o as measured by the hot-wire angle probe,

Bg @s determined by & standard five-hole yaw probe, and (ﬁG)O are
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plotted against Bp in figure 43. The flow angle in the coordinate
system fixed to the rotor (BG)O was calculated from an average value of

(“G)o: 40°, and (CXG)O taken as 95 ft/sec.

From figure 41 it is determined that (WQG)i was greater by 4t to

18 percent than (W (as B, 1increases). This result correlstes
9a¢)o C

with the experimental cbservation that the stall-cell angle @ was
negative and smaller than -15° for all the stall-cell patterns of
configuration A.

Experimental results -~ configuration B.- To determine the effect of
blade spacing, half the blades of configuration A were removed resulting
in configuration B. The number of cells and their propagaetion velocity
are shown in figures 44 and 45 which indicate that periodic one- and two-
cell patterns existed for only & narrow range of high incidences for
configuration B.

Experimental results - configuration C.- To ascertain the effect of
blade stagger angle, the stagger was increased 22% from configuration A

to configuration C and comparative data were taken. The measured results
are indicated in the following figures:

Corresponding
Figure Results plotted against BC figure for
configuration A
46 |Number of cells, Vp, and predicted Vi 37
47 |Hot-wire traces of Cxp and Cx, Lo
48 {(1) Cx, measured by sphere static probe ko, 43
2 end (C as calculated from
(2) (CXG)O ( xG)i
figure 47
(3) (c ) = 76 ft/sec as calculated from
*@/o
figure 49
(&) By £s determined with standard five-hole
yaw probe

(5) Cyg) as measured with hot-wire angle

probe
(6) (BG) = 45,30 calculated teking average

(“G)o = 37.5° and average
(CXG>0 = 76 £t/sec
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Figure 49 shows & strip-film record of a hot-wire trace of axial
velocity measured at station G while the throttle was continuously
opened so that the compressor opersting condition chenged from two, to
one, to zero cells. TFor (CxG)o’ the trace is at the top edge of the

film for the entire strip. During this strip film, which took about

5 seconds, direct-current amplifier drift wes negligible. (The calibra-
tion was checked immediately after the run, and it had not changed during
the run.) The value of (CxG)o is observed to be almost constant and

is calculated to be T6 ft/sec, which compares well with the average of
the values fram the hot-wire traces of figure 47.

For configuration C, the angle ¢ between the stall cells and
rotor axis was determlned from the measurement of phase lag between two
traces of hot wires inserted at statlons G and X. Jt was determined
that for the one-cell pattern . @ = 19° and for the two-cell pattern
@ = 16°. The error of measurement probably was less than 10 percent.

Comments on compressor operation.- Just before rotating stall
started, as the throttle was clogsed, a "mushy" flow, as it has been
called, was observed near the hub and tip as indicated by & "hashy" hot-
wire trace., A very weak rotating stall might have been present at the
hub for configurastion C. The relative magnitudes of the mush at
1/4 inch from the hub and rotating stall of one cell can be seen from
hot-wire traces of figure 50 for configuration C. The mush was less
than one-fifth the amplitude of rotating stall and was not investigated
further. Rotating stall measurements were taken through the operating
range until surge started. Although unperiodic propagation could still
be observed along with the surge (since the surge was of much lower fre-
quency) no attempt was made to take date and separate the two effects.
The veriation of velocity fluctuation with axial distance from the rotor
was measured at one operating condition for configuration A as is shown
in figure 51. It is noted that the amplitude of the velocity fluctua-
tions decreases rapidly with distance upstream but that the fluctustions
persist much farther downstream. At station K, 26 inches downstream,
the amplitude of the fluctuations is about one-helf that at station G.

Upon throttling the flow, rotating stall always sterted as two
cells then, as the flow was increased, the two cells changed to one.
However, 1if the axlal symmetry of the flow was destroyed by placing an
obstacle (such as the observer's hand) in the inlet or outlet of the
compressor, the one-cell pattern could be forced to appear before the
two-cell pattern as the flow was throttled.

If the compressor were operated at a value of By where the number

of stall cells changed, the cell pattern sometimes shifted back and
Forth between the two numbers of cells.
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Radial traverses of the hot-wire probe during stall propagation
indicated that the flow was fairly two-dimensional for all the observed
stall-cell patterns, although in some cases an estimated 25 percent
smaller fluctuation in velocity was observed at the hub.

To determine the effect of Reynolds number on rotating stall char-
acteristics, the rotor speed was held at 500, 750, 1,000, 2,000, and
2,500 rpm and the flow was throttled. A comparison of the number of
cells and propagation velocity at three speeds is shown .in figures 52
end 53 as functions of Bp. "Constant geometry" runs were made for two

constant throttle and rotor settings. The results of these runs and the
previous one are shown in figure 54, which is a plot of the number of
cells and By as a funetion of Rec. As indiceted in these figures,

there is & hysteresis effect between the number of cells for some values
of Re; and Bp. The data points at minimum values of Bg indicate

the onset of stall propagation and the points at maximum velues of Bg

indicate the end of periocdic stall propagetion. (For higher values of
Bc high-frequency velocity disturbances and surge existed.) The data

plotted in figures 52, 53, and 54 indicate that there was not much
effect of Reynolds number sbove 100,000 or 1,500 rpm but that for lower
values the range of B £for which periodic propegation existed is

shifted up. As Reynolds number was lowered, the one-cell and then the
two-cell patterns disappeared, but there was not much effect upon prop-
agation velocity. Tt was found that there was virtually no difference
in CPCG at corresponding values of g for 500 and 1,500 rpm.

Axial velocity profiles as determined from measurements made with
a standard five-hole yaw probe for configuration C are shown in fig-
ure 55. They indicate that there is some error involved in assuming
mean radius measurements to be representative but that this error is
less during than before the onset of stall propagation. The difference
in area under the profiles measured during stall propagation indicates
the error inherent in using a standard five-hole probe in an unsteady
flow.

Discussion of experimental results.- The hot-wire measurements of
figures 40 and 47 indicate that the downstream axial velocity profile
can be approximated with a square wave which changes with throttling
only along the sbscissa. That is, (CXG) and (CxG> in figures 42

o} i

and 48 remain essentially constant with B¢ &and maintain approximately

a 4:1 ratio, but the number of cells and the width of the cells change
so that their blockage effect increases continuously with throttling.
The data appear to correlate with those from reference 19 in indicating
that during stall propagation the velocity triangles outside the stall
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cells were nearly the same as theose for CP ' (before the onset of
stall propagation).

The unsteady pressure measurements of figure 38 indicate that the
fluctuations were several times greater 1 inch upstream of the rotor than
they were 5.6 inches downstream. (When a pressure gage was Inserted
T inches downstream et station G, virtuelly mo fluctuations could be
observed in the trace.) As & stall cell approached the upstream gage,
the static pressure at this point rose to a value grester than the
absolute total head far upstream but less than the total head relstive
to a coordinate system fixed to the stall-cell pattern. The static
pressure then dropped as the stall cell passed by the gage. There was
a pressure drop through the rotor in the stall cells. This qualitative
description of the pressure field is predictable from the flow model
used in the analysis from a consideration of the velocities induced by
the stall cell in & coordlnate system fixed to the stall-cell pattern.

The hot-wire traces for CXE in figures 40 and 47 indicate that,

as B increased, the cells grew wider and “that the axial velocity pro-

file Just upstream of the rotor changed shape as they grew wider. The
"sag" in the profile caused by the blockage of the stall cell changed
from a splke form for a thin cell to a double spike indicating that
there was more flow through the center of the wide cell than near its
edges. Since the trace did not ever go to zero (the minimum value being
25 ft/sec), in no case was there flow reversdl at station E during staell
propagation. This fact was verlified independently of the calibretion of
figures 40 and 47 by quickly pulling the hot-wire probe at station E out
of the compressor and observing that for zero air velocity the trace went
considerably lower than the minimum displacement for the double-spike
wvave form during stall propagation. A check was also made by quickly
turning the wire 90° from a tangential to axial direction and cbserving
the same result as above for zero velocity normal to the wire. The
number of cells 1s observed to lncrease after the double-spike form
appeared, which suggests that the double-spike form split into two cells,
a tendency predicted by the preceding analysis. From the strip-film
trace of figure 49, it is observed that the opposite sequence occurred
vhen the flow was increased through the rotor rumning at consbant revolu-
tions per minute. At first there were two stall cells 180° apart, then
the cells gradually moved together forming a double-spike pattern and
then a single~spike pattern.

The hot-wire traces of figures 4Q, 47, and 49 show that the shape
of the stall-cell pattern is not perfectly constent in time or axisym-
metric (as assumed in the analysis for a given mean flow and even number
of cells). This fact appears to explain why one cell of a two~-cell pat-
tern might split and thus form & three-cell pattern as the flow is

[T AL
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throttled instead of both cells splitting simultaneously., However, the
trend for the observed shapes of the stall-cell peattern with throttling
appears to correspond qualitatively with the trend predicted by the
analysis.

V. v

In figures 44 and 45 EB— and 7% as functions of Bg are com-
Xc

pared for configurations A, B, and C and for data from reference 19. It

is noted that s8ll stall-cell patterns observed herein revolved at

0.480 < Vp < 0.59U, or approximately half wheel speed. In figure 4k,

Vp increased slightly when the solidity of the cascade was reduced in

agreement with the trend observed in the circular cascade.

Not much effect on propagation velocity occurred with the change of
stagger angle or with Reynolds number change above 100,000. However,
the number of cells was greatly affected by the change of solidity, of

»

stagger, and of Reynolds number below 100,000. p

The propegation veloclties predicted by the small perturbation
theories of references 2, 3 (no phase lag), and 4 as shown in figures 37
and 46 appear to overestimate the experimental values hy as much as
50 percent. The correlation of the data with the theory of reference 4
appears to be well described by the correlation given on page 24 of that
reference "the values of propagation velocity predicted when the boundary-
layer delsy is neglected should be larger then those obtalned experimen-
tally, with the difference most pronounced for the case of disturbances
covering only a few girfoils when the boundary-lsyer delay will have an
important effect. An increase in the wave length of the stall cells
should be accompanied by an increase In propagetion velocity, if other
varisbles are unchanged."

The effect of number of cells on propagation veloclty as predicted
above appears to be borne out qulte conclusively by the data plotted in
figures 37 and L46.

In figure 56 the function

cos Bc

cos BG(l - CPCG)

A = Discharge coefficient =

1/2

is plotted against PBp. The values of Bg were those determined with

the standard yaw probe. In references 5 and L it was predicted that
smell perturbation stall cells mey form when the slope of this curve
passes through the origin. There seems to be fair agreement from fig-"
ure 56 with this prediction.

A}
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It is observed in figures 21 and 22 that the slopes of the curves
of Cp egainst B for configurations A and C both approached zero

when stall propagation occurred.

In reference 19 tests were made with & rotor of solidity =1,
28.5° stagger, NACA 65(12)10 airfoils, and hub-tip ratio of 0.9. As
shown in figure 45, there is overall qualitative agreement between the
data for configuration A and those In reference 19. Stall propegation
started at nearly the same incidence and VQ/U wvas nearly the same,

but there were differences in the number of cells and the measured pres-
sure fluctuations. In reference 19 it is reported that the pressure
fluctuations downstream were about 60 percent of those upstream. In
the present investigation, they are found to be three to five times as
great upstream as they are downstream; however, the gages are closer
together than they are in reference 19, and the cells extend more uni-
formly from root to tip than the two- and three-cell patterns of
reference 19.

Correlation of Analytical and Experimental Results

Verfication of the assumptions made in the analysis appears from
the following experimental results:

(1) From figures 1, 2, 3, 12, and 23, it is observed that during
stall propagation the blades in the circular cascade shed vortices upon
entering or leaving stall cells and lose nearly all their bound vorticity
when they enter the cells.

(2) From the approximate squere wave shape of the velocity profiles
downstream of the rotor during stall propagetion, as indicated by the
hot-wire traces of figures 40 and 47, it appears that the vortex flow
model may be used to represent the actusl flow through the rotor. Fur-
thermore, the square wave shape of the downstream velocity profiles tends
to support the idea that the rotor blades stalled from their leading
In reference 11, page 66, it is shown that the rate at which vorticity
is shed from an airfoil is W2/2 where W 1is the free-stream velocity
at the separation point of the boundary layer. Since immediately down-

stream of the rotor blades the vorticity is observed to have been con-~

centrated along the stall-cell boundaries,-it might be argued that, in
order for the blédes to have shed vorticity quickly enough to have
established thls pattern, the point at which the boundary layer separated
must have been loceted where W was large, nesar the leading edge. The
validity of this speculation is not essential, however, since the present
analysis is independent of the location of separation.

I 'li
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(3) The observation from the section "Investigation in an Isolated
Rotor" that the ratio of downstream exial velocity outside the cell is
about four times as great as that inside indicates that the approxima-
tion of N =P =1 in the analysis may be a reasonable one in view
of the discussion in the section "Derivation of Expressions for
Propagation Velocity" which indicates that this approximation is not
critical to the resulting prediction for Vp.

In the present anelysis, an approximation is made for the flow far
downstream of a continuous blade row during stall propagation. The
results of the analysis indicate why some observers have found incongru-
ous experimental results from linear cascades of finite length. It
appears that, as was first described in reference 3, the blade stall-
unstall characteristics depend strongly on the nature of the unsteady
flow induced upon them by the downstream flow pattern. In a linear
cascade of finite length, the downstream flow pattern is quite different
from that for a continuous circular cascade or a rotor. Even though
there may be many blades in the linear cascade, a fully developed, trans-
lating, downstream flow pattern as described in the anslysis is precluded
by the end wall effects. Therefore, the present analysis is valid only
for an infinitely long linear cascade, or an isolated rotor, where the
dovnstream flow field extends far from the cascade,

The tendency for the stall cell to split into two as its width
increases, as predicted by the analytical flow model, appears to be
supported by the measured axial velocity profiles just upstream of the
rotor given in figures 40, 47, and 49. Furthermore, this tendency might
explain why smaller stall cells (greater numbers of cells) existed in
the circular cascade than in the rotor. Since the two-dimensional-flow
field of the circular cascade extended only a few blade chords downstream
of the cascade, the discussion in the section "Prediction of a Trend for
the Number of Cells" indicates that the cells should be thinner (smaller
n values in fig. 10) than they are for the rotor. This fact, together
with the assumption that there must be enough total blockage from the
cells to cause (Wp), to be nearly the same as it is for Cpmax (as

observed for the rotor), implies that there should be & greater number
of cells in the circular cascade then in the rotor.

Equation (12) shows that, for the vortex flow model assumed in the
analysis, stall cells can exist only for Cp > coszﬁl. In figure 57

this minimum value of Cp 1is plotted asgeinst Bl‘ Measured values of

CP are plotted for increasing values of By until the onset of stall
propagetion. Propagation started after Cp > coszﬂl in the three

rotors tested. (This was not elways true for the circular cascade.)
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Equation (11) shows that for the assumed type of propagation to
exist Wel > Wo. If it 1s assumed that Cxl = sz and B, = A, this

condition becomes cot By < cos A, giving a minimum value of B; for

which stall propagation can exist in & cascade of stagger A. This
minimum value of By and the corresponding measured values of Bq
where stall propagation started in the test rigs sre plotted in fig-
_ Wo
ure 58. Also plotted is cot By = 0.866 cos A (which gives Vp = —EL

from eq. (11) if Cxl = Cx2 and B, = %). It appears that this latter

curve correlates rather well with the values of B; where stall propa-
gation actually began in the test rigs.

Predicted values of propagation velocity for the vortex flow model
are glven by equations (11) and (12). Correlation of the rotor data
with equation (12) is shown in figures 37 and 46 where QPCG from

figures 21 and 22 was used. Correlation of the data from reference 19
with equation (12) is shown in teble I where CP3 from that reference

was used. It appears that the predicted values of Vp from equation (12)
are considerably greater than the measured values. It is felt that the
reason for this trend lies in the fact that 'p2 - p; was assumed to be
given by isentropic flow outside stall cells in developing equation (12).
The presence of blade wekes in the actusl flow outside the stall cells
causes (B2)0 to be less for & given measured value of Ap than it is

in the assumed ideal flow. Therefore, for a measured value of Ap, the
value of Vp should be less than that predicted by equation (12).

Using the average measured values for (Bg)o and (CXG)O indicated

in figures 42, 43, and 48, VQ/U calculated from equation (11) is 0.57

for configuration A and 0.60 for configuration B. The correlation with
the measured values of Vq/U as shown in figure 45 appears to be good

consldering the accuracy of measurement, The departure of the flow from

two-dimensionality, and the simplifying assumptions in the analysis.
Equation (11) appeers to predict propagation velocities more closely
than equation (12), probably because it 1s less sensitive to the effect

of blade wakes outside stall cells.

In table I is shown the correlation of date from reference 19 with
equation (11) using Cp 7 from reference 19 and assuming that

(Bg)o = Constent = 28.5° = A
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for the two- and three-cell patterns and that Cxl = 0.8<Fx2) for the
o)

one-cell pattern, which are estimates based upon the date presented in
reference 19. In table II 1s shown the correlation of data from the clr-
cular cascade with equation (12). It is observed that equetion (12) over-

v
estimates the measured values of L considerably for the circular cas-
X1
cade. However, good correlation cannot be expected since the assumption
in the anslysis that the flow fleld extends infinitely far downstream of
the cascede is not a valld approximetion for the circular cascade. Fur-
thermore, the analysls is not velld for a radisl flow field.

Tn teble III is shown the correlation with equation (12) of data
from reference 14 for a guide-vane rotor stage relative to the rotor.

CONCLUDING REMARKS

Using approximations suggested by visual cbservation of the flow
through a circular cascade, & vortex flow model of stall propagation in
an isolated blade row has been developed. The equation derived from
snalysis of the vortex flow model (eq. (11)) appeers to predict the prop-
agation velocities measured in an isclated rotor within 15 percent. Stall-
cell configuretions observed in an isolated rotor were found to be nearly
two-dimensional and to propagete at approximately half wheel speed.
The stall cells consisted of regions where the axial velocity was small
and extended downstream from the rotor in a direction parallel to the
rotor axis within +20°,

The nmumber of cells increased as the flow through the rotor was
throttled. A qualitative prediction of the analysis is that a stall
cell of the type assumed should have a tendency to split into two cells
as it grows in peripheral extent. This tendency may be the reason for
the observed trend in the number of cells.

Massachusetts Institute of Technology,
Canbridge, Mass., August 13, 1956.
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TABLE I
CORRELATION OF DATA FROM REFERENCE 19
WITH EQUATIONS (11) and (12)

B | Cps o Number of (gg;) éB_ %E_

deg cells X1 /measured X1/eq. (12) X1/eq. (11)

55 | 0.46 2 0.53 0.80 0.58

56 A3 3 48 .87 .5k

58 .33 1 .89 1.19 .87
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TABLE

iI

CORRELATION OF DATA FROM CIRCULAR CASCADE
WITH EQUATION (12)

(a) Data from reference 4; o = 1

Bl, C b Number of gx—’—> gp_
deg cells T]1/measured %X1)eq. &2)
63 0.48 9 0.60 0.80
6l RIS 9 .64 .86
66 &4 10 to 12 .70 1.03
€8 &.36 12 .70 1.22
8Extrapolated from data.
(b) Configuration A; o =1
) V:
B> c Number of (-Zl- (EP_>
deg P cells T1/measured *1/eq. (12)
55 0.33 15 to 20 0.2k4 1.4
60 .29 13 to 1k .54 1.3
68 .25 16 .75 1.6
81 .12 5 , 1.6 4.3
(c) Configuration B; o = 1
V- V-
Bqs c Number of <C—P—> (CL>
deg P cells T1/measured *1/eq. (12)
58 0.45 9 to 10 0.55 0.82
6l .36 11 .83 1.6

59
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TABLE III

CORRELATION OF DATA FROM REFERENCE 1k

WITH EQUATION (12)

Bqs c Number of _‘v_’p__> <lf_'g_>_>
deg P cells Cxl measured Cxl eq. (12)
67.5 0.%0 8 0.9 1.4
72.5 .25 9 1.1 1.8
75.0 8,03 1 2.3 2.2
T7.5 & 20 1 3.0 2.8
80.0 8.16 3 3.0 3.6

8Extrapolated from data.



Figure 1.- Interferometer films.

ﬂw’”h‘ 'hm ﬁh 'ﬂlh'n. 1"""'| JFF‘MW e

.l l“"i' |

(e) By = 57°.
Configuration B; o = 1; time is from right to left.

H#ETH NI YOVN

19




(v) By = 64°.

Figure 1.- Concluded.
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Figure 2.- Interferometer films. Configuration B; o = 1/2.
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(b) gy = 61°.

Figure 2.~ Continued.
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() gy = T0°

Figure 3.~ Interferometer films. Configurstion B; ¢ = 1/3.

Figure 4.~ Interferometer films.

Configuration B; o = 1/6; By = ST°.
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Figure 5.- Vortex shedding frequency against solidity.
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Figure 6.- Loci of vortex I' for constant plate circulation.
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Figure 7.~ Joukowski trensformetlion of circular arc.
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Figure 8.- Vortex representation of cascade.
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Figure 10.- Pattern of vortices in stall cell.
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Figure 11l.- Veloclty triangles for stall cell.
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Figure 12.- Interferometer film. Configuration A; 8 = 1/2; By = 60°.
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Figure 13.- Velocity triangles for isolated rotor.
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Figure l4.- Plot of K against tan § for two values of B,.
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Figure 16.- Velocity induced from element of vortex sheet.
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Figure 17.- Velocity induced from finite-length vortex sheet.



NACA TN Li3h

na

o

Figure 18.- Velocity induced from two finite vortex sheets at angle

9

8.



.5 ’/”A O

O g =14; 54 BLADES; .24<Mg,42;  122,000<Re<198,000

A ¢ =1; 54 BLADES; .24<Mc.4; 163 1 000<Re< 262,000

\E q o =%; 27 BLADES; .24<My<,42; 000<Re<262, 000
A \\Qi
.3 D, / !i
ﬁ{\ N
Cp \ i A
\‘ d ‘ ﬁ h\q\ o
2 . Ny Y/ \ ot
m%.o \ /, N /6}’ N
\\Q ﬁU/}\bT°~n4?éZr \‘*c *ln
N\ BT R
A
1 i
R AN r .
4 o] e} N
/1 al
’ k 5%14{,
d
44 48 52 56 60 64 68 2 6 80 84
el) *g 7 7
Flgure 19.- Plot. of pressure coeff:l.cient agalnst upstream alr angle. Conflguretion A; values

for 53° < By < 75°.

HCTH NI YOVN




'5 L] L)

" by~ | ! 1 | ] e FIG. |9
Nyl e Va\ (CONFIGURATION A,
\D / h A 163,000 < Rg< 262,000)

04 ¥
fa} ._.""on‘-o\o
1l"l- \; o’ . \O
“ " - "= \
3 B T N
Cp '-..'. H °\o'_""~
.'.... -:- :E :_-\ * ] ,o o
2 s ; 3 . a% e
- .'I.. =: -'. l'.. .-.-' -
li 1
~-10 CELLS 11-12 CELLS
p/CY‘l: +0b VP/Cr-'= .83
Vp Geﬁ 030 Vp/cel= .37
0 M = '33. ' M, = .40
46 50 54 58 62 66 70 74 78
(51 1 deg

Figure 20.- Pressure coefficient sgainst upstream air angle. Configuration B; o = 1; 5i blades;
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Flgure 21.- Pressure coefficient against Bo. Conflguration A.
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Figure 22.- Pressure coefficient versus Bg. Configuration C.
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Figure 25.- Schematic diagram of clrcular-cascade test sec“:ion. Configuration A.
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(a) By = 55°.
Figure 24.-~ Schlieren films. Configuration A;

¢ = 1; time 1s from right to left.
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Figure 24.- Continued.



(@) By = 81°.

Figure 24.- Concluded.
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Figure 25.- Velocity of stall propagation sgaeinst upstream air angle.
Configuration A. R ' —
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Figure 26.- Hot-wire traces upstream of circular cascade.
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(a) By = 46 4% M; = 0.45. (b) By = 51.6% M; = 0.50. (e) By = 60.79 My

Figure 27.- Interferograms of steesdy flow.

Configuration B; o = L.
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Figure 28.- Photograph of light source.

Figure 29.- Photograph of piezoelectric crystal pressure pickup.
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Figure 30.- Pressure distributions calculated from figure 2(b). Circles
indicate datae points obtalned from interferogram fringes and by
interpolating half fringes.
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Figure 30.- Continued.
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Figure 31l.- Normal~force coefficlient agalnst time.



96 NACA TN 413k

36

32

28

’ \
20 o /

X

16 \_

4 8 L2 1.6 27

T

Figure 32.- Local Incidence against time.
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Figure 33.- Lift coefficient against local incidence.
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Figure 34,-:Comparison of pressure distributlions. By = L6.4°,
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Flgure 35.- Schematic drawing of research compressor showlng measuring
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#ETH NI VOVN

66




100 NACA TN 4134

HOT-WIRE PROBE
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Figure 36.- Hot-wire angle-measuring probe.
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Figure 37.- Propagation velocity against Bc.
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weTH NI VOVN

TOT




(a) Bg =55.8°  (bv) Bc =59.8%  (e) Bg =63.1°% () Bc=66.6%  (e) Bg =7T0.3%

one cell. two cells. three cells. four cells. four cells.

Figure 38.- Static pregsure at outer wall. Configuration A; upper trace at gtation FG; lower
trace at station E; time from left to right.
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(a) Bp = 56.7°%; (b) PBp = 60.1°; (e) Bg = 63.4%; (@) Bg = 67.3% (e) Bp = T1.0%

one cell. two cells. three cells. four cells. four cells.

Figure 39.- Hot-wire traces of CxG and CBG' Configuration A.
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(e) B = 57.0° (d) Bg = 5T-T% (e) Be

one ecell. two cells. two cells.

(£) B = 61.1°% (&) B¢ = 61.5%
two cells. three cells.

©OT

(n) Bg = 63.19% (1) Bg = 64.5% (J) Bg = 65.6%

three cells.

(k) Bp =65.9% (1)
four cells.

Figure 40.- Hot-wire traces of

Cxg

= 67.3%;
four cells.

and

c

X.E -

(m) Be =T70.7%  (m) Bp = Th.6%

four cells. four cells.

Configuration A.

three cells. three cells.
1
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Figure 41.- Velocity components versus pa. Configuration A.
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Flgure 42.- Velocity components versus

Bo- Configuration A.
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Flgure 43.- Flow angles versus Bg. Configuration A,
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Figure 4k.- Plot of propagation velocity versus B..
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Figure 46.- Propagation veloclty versus Ba. Configuration C.
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(a) Bo = 66.29; (b) Bo = 66.6°; (e) Bo = 67.0°; (a) Be = 66.0°;
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Figure 47.- Hot-wire traces of CxE

{J ‘ l l||
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and. CxG. Configuration C.
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Figure 48.- Veloecity components and flow angles versus BC'
Configuration C.
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Figure 49.- Strip-film record of hot-wire trace showing CxG as throttle

is opened.

Configuration C; time from left to right; ch.



11k NACA TN L1%h

(2) Hub. (b) Mean radius. (¢) Tip.

Figure 50.- Hot-wire traces at station E. configuration C.
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Figure 51.- Hot-wire traces of C,. Configuration A. C.¥: = 70°.
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Figure 52.- Plot of Vb/CxC versus Po. Open symbols indicate data
!
obtalned at 500 rpm; solld symbole, 1,500 rpm; flagged symbols,

2,500 rpm.
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Figure 53.- Plot of VQ.IU versus B;. Open symbols indicate deta

obtained at 500 rpm; solid symbols, 1,500 rpm; flagged symbols,
2,500 rpm.
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Figure 55.- Veloeclty profiles before and after rotor. Configuration C.
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Figure 56.- Plot of discharge coefficlent A versus cot (B)g. Flagged
symbols indicate configuration C.
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Flgure 57.- Minimum Cp for stall propagation versus B;.
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